TABLE OF CONTENT

PREFACE... i
TABLE OF CONTENT... iii
CONTRIBUTING AUTHORS.. xiii

PART I
FUNDAMENTAL COMPRESSOR FOR AIRCRAFT’S TURBO ENGINES

NOMENCLATURE. .. 2

CHAPTER ONE
INTRODUCTION TO COMPRESSORS. ... 4
1.1 Introduction ... 4
1.2 Types of Compressors ... 4
 1.2.1 Positive Displacement Compressors ... 4
 1.2.2 Dynamic Compressors ... 4
1.3 Comparison of Compressor Types ... 5
 1.3.1 Flow rate .. 5
 1.3.2 Efficiency ... 6
 1.3.3 Pressure Ratio ... 7
 1.3.4 Characteristic Curves .. 7
CHAPTER TWO

TWO-DIMENSIONAL ANALYSIS OF COMPRESSORS.

2.1 Velocity diagrams of the compressor stage
2.2 Thermodynamics of the compressor stage
2.3 Stage loss and efficiency
2.4 Reaction ratio
2.5 Stage loading

CHAPTER THREE

THREE-DIMENSIONAL ANALYSIS OF COMPRESSORS.

3.1 Theory of radial equilibrium
3.2 Free-vortex flow
3.3 Forced vortex
3.4 General whirl distribution

CHAPTER FOUR

ROTATING STALL AND SURGE.

4.1 Performance of Axial and Radial Compressors
4.2 Aerodynamic Flow Instabilities
 4.2.1 Rotating stall
 4.2.2 Surge
 4.2.3 Rotating Stall and Surge in Radial Compressors

CHAPTER FIVE

MODELING OF COMPRESSION SYSTEMS.

5.1 Introduction
5.2 Greitzer lumped parameter model

CHAPTER SIX

COMPRESSOR MODELS.
CHAPTER SEVEN

SURGE AND ROTATING STALL.

7.1 Stability of compression systems
7.2 Control of Surge and Rotating Stall
7.3 Avoidance Control
7.4 Active Control

REFERENCE OF PART I.

PART II

RIGID-BODY DYNAMICS OF AIR VEHICLE

CHAPTER EIGHT

AIRCRAFT RIGID-BODY EQUATION OF MOTIONS: A NONLINEAR MODEL

8.1 Introduction
8.2 Definition of Axes and Angles
8.3 The Rigid-Body Equations
8.4 Conclusions

CHAPTER NINE

AIRCRAFT EQUATIONS OF MOTIONS: A NONLINEAR MODEL

9.1 Introduction
9.2 Orientation and Position of the Airplane
9.3 Euler’s Equations of Motion
9.4 Effect of Spinning Rotors
9.5 The Collected Equations
CHAPTER TEN

AIRCRAFT EQUATIONS OF MOTION: A LINEAR MODEL

10.1 Introduction 63
10.2 The Small-Disturbance Theory 63
10.3 Conclusions 69

REFERENCE OF PART II 70

PART III

DYNAMICS OF FLEXIBLE STRUCTURE OF AIR VEHICLE 71

NOMENCLATURES 72

CHAPTER ELEVEN

OVERVIEW OF DYNAMICS OF FLEXIBLE AIR VEHICLE 76

11.1 Introduction 76
11.2 The Influence of the Structural Flexibility on Vehicle Design 76
11.3 Non-uniform Beam Finite Element 77
11.4 Aerodynamic Discrete Element Methods 79
11.5 The doublet lattice method (DLM) 79
11.6 The doublet point method (DPM) 80
11.7 Conclusions 81

CHAPTER TWELVE

TRANSLATION OF AXIS PROCEDURE TO CONSTRUCT STIFFNESS MATRIX

12.1 Introduction 83
12.2 Static Equivalence Translation 83
12.3 Kinematic Equivalence Translation 84
12.4 Stiffness Matrix Construction
12.5 Conclusion

CHAPTER THIRTEEN
MINIMUM DENOMINATOR OF RATIONAL FUNCTION
13.1 Introduction
13.2 Rational Function Transformation
13.3 MDRF Procedure for Non-linear Variation of the Stiffness Distribution
13.4 Direct Differentiation Method
13.5 Substitution Procedure
13.6 Conclusion

CHAPTER FOURTEEN
TORSIONAL STIFFNESS MATRIX OF NON-PRISMATIC BEAM
ELEMENTS
14.1 Introduction
14.2 Torsional - Twist Deformation Relation
14.3 Deformation of the Cantilever Bar Problem
14.4 Flexibility Matrix of the Cantilever Bar
14.5 Stiffness Matrix
14.6 Conclusion

CHAPTER FIFTEEN
BENDING STIFFNESS MATRIX OF NON-PRISMATIC BEAM
ELEMENTS
15.1 Introduction
15.2 Load - Displacement Relation
15.3 Displacement of a Cantilever Bar Problem
15.4 Flexibility Matrix of the Cantilever Beam
15.5 Stiffness Matrix
15.6 Conclusion
CHAPTER SIXTEEN
FORMULATION OF KERNEL FUNCTION FOR AERODYNAMIC LOADING ON AIR VEHICLE
16.1 Introduction 105
16.2 Formulations of the Kernel Function 105
16.3 The formulation of Watkins, Runyan and Woolston 106
16.4 Formulations of Laschka 107
16.5 Formulations of Yates 109
16.6 Formulations of Landahl 109
16.7 Conclusion 110

CHAPTER SEVENTEEN
UNSTEADY AERODYNAMIC THEORY OF LIFTING SURFACE
17.1 Introduction 111
17.2 Assumptions 111
17.3 Basic Concept 111
17.4 Boundary Conditions 113
17.5 Kernel Function 113
17.6 Incomplete Cylindrical Function 115
17.7 Conclusion 115

CHAPTER EIGHTEEN
NUMERICAL EVALUATIONS OF HYPERGEOMETRIC CYLINDRICAL FUNCTIONS
18.1 Introduction 117
18.2 Kernel Integral Function 117
18.3 Modified Bessel Function of the First Kind of Order 0 118
18.4 Modified Bessel Function of the First Kind of Order 1 119
18.5 Modified Bessel Function of the Second Kind of Order 0 120
18.6 Modified Bessel Function of the Second Kind of Order 1 121
18.7 Modified Struve Function 121
18.8 Conclusion 122
CHAPTER NINETEEN

ANALYTICAL DERIVATION OF THE INCOMPLETE CYLINDRICAL FUNCTIONS: REAL PARTS

19.1 Introduction 123
19.2 The finite subinterval of the integral 123
19.3 The Infinite Subinterval of the Integral 125
19.4 Conclusion 129

CHAPTER TWENTY

ANALYTICAL DERIVATION OF THE INCOMPLETE CYLINDRICAL FUNCTIONS: IMAGINARY PARTS

20.1 Introduction 130
20.2 The finite subinterval of the integral 130
20.3 The Infinite Subinterval of the Integral 132
20.4 Conclusion 134

CHAPTER TWENTY ONE

ALTERNATE EXPANSION SERIES FOR THE INCOMPLETE CYLINDRICAL FUNCTION

21.1 Introduction 135
21.2 Separation of Real and Imaginary Functions 135
21.3 Separation of Regular and Singular Functions 138
21.4 Conclusion 139

CHAPTER TWENTY TWO

EXPANSION SERIES OF CONTINUOUS FUNCTION USING ANALYTICAL INTEGRATION OF LEAST SQUARE REGRESSION

22.1 Introduction 140
22.2 Taylor and Maclaurin expansion series 140
22.3 Present Least Square Expansion Series 141
22.4 Application of the Present Approach to the Incomplete Cylindrical Function 143
22.4 Conclusion 145

CHAPTER TWENTY THREE

ALTERNATE APPROXIMATE FUNCTION FOR KERNEL

FUNCTION OF PLANAR OSCILLATING LIFTING SURFACES

23.1 Introduction 146
23.2 Epstein's Approach 146
23.3 Present Approach for Near Field Region 147
23.4 Present Approach for Middle Field Region 150
23.5 Present Approach for Far Field Region 151
23.6 Conclusion 151

CHAPTER TWENTY FOUR

APPROXIMATE FUNCTION FOR NEAR-FIELD KERNEL

FUNCTION OF NON-PLANAR LIFTING SURFACES

24.1 Introduction 152
24.2 Kernel Function Equation 152
24.3 Present Approximate Function 154
24.4 Conclusion 157

CHAPTER TWENTY FIVE

APPROXIMATE FUNCTION FOR FAR-FIELD KERNEL

FUNCTION OF OSCILLATING NON-PLANAR LIFTING SURFACES

25.1 Introduction 158
25.2 Landahl's Kernel Function Equation 158
25.3 Present Kernel Function Formulation 159
25.4 Conclusion 161
CHAPTER TWENTY SIX
IMPROVED VORTEX LATTICE METHOD
26.1 Introduction 162
26.2 Present Vortex Lattice Method 162
26.3 Conclusion 167

CHAPTER TWENTY SEVEN
IMPROVED DOUBLET POINT METHOD
27.1 Introduction 168
27.2 Present DPM for Planar Lifting Surfaces 168
27.3 Present DPM for Non-Planar Lifting Surfaces 170
27.4 Conclusion 174

CHAPTER TWENTY EIGHT
IMPROVED DOUBLET LATTICE METHOD
28.1 Introduction 176
28.2 Present DLM for Planar Lifting Surfaces 176
28.3 Conclusion 179

CHAPTER TWENTY NINE
APPLICATION OF THE AERODYNAMIC DISCRETE ELEMENT METHODS
29.1 Introduction 180
29.2 Delta Wing with AR=2 180
29.3 Cropped-Double-Delta Wing 182
29.4 Sweptback Wing with Partial Flap 183
29.5 AGARD Wing-Horizontal Tail 184
29.6 Conclusion 186

CHAPTER THIRTY
AEROELASTIC STABILITY PROBLEM OF AIR VEHICLE
30.1 Introduction 187
30.2 The Flutter Solution Method 187
30.3 Validation of the present flutter procedure 191
30.4 Conclusion 193

REFERENCES OF PART III 195
CHAPTER THREE

THREE-DIMENSIONAL ANALYSIS OF COMPRESSORS

In the previous chapter, it was assumed that the flow is two-dimensional and the radial velocity was neglected. This assumption is valid only for small blade heights. For high tip to hub ratio compressors, three-dimensional flow must be considered. The radial flow results from the imbalance between the centrifugal forces and the restoring radial pressures. If the flow is under radial equilibrium, the streamlines lie in a circular, cylindrical surfaces and the flow is axisymmetric (neglecting the effect of the existence of the blades).

3.1 Theory of radial equilibrium

As shown in Figure 8, a small element of fluid of unit depth and an angle $d\theta$ is rotating about the axis with tangential velocity, c_0. The element has a mass dm.

Under radial equilibrium condition, the pressure forces balance the centrifugal forces:

$$(p + dp) (r + dr) d\theta - p r d\theta - \left(p + \frac{1}{2} dp\right) dr d\theta = dm \frac{c_0^2}{r}$$

(3.1)

Figure 8 A fluid element in radial equilibrium ($c_r = 0$).