MECHATRONICS BOOK SERIES:
ROBOTICS AND AUTOMATION

Editors
Rini Akmeliawati
Wahju Sediono
Nahrul Khair Alang Md. Rashid

IIUM Press
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>ii</td>
</tr>
<tr>
<td>Editor</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Content</td>
<td>v</td>
</tr>
<tr>
<td>1. Visual Tracking for Human Face</td>
<td>1</td>
</tr>
<tr>
<td>A.A. Shafie, Iqbal and M.R. Khan</td>
<td></td>
</tr>
<tr>
<td>2. Robot Design : A Case Study of Team Learning Experience and Outcome</td>
<td>7</td>
</tr>
<tr>
<td>A.A. Shafie</td>
<td></td>
</tr>
<tr>
<td>3. Development Neck Support for Humanoid Robot Head</td>
<td>14</td>
</tr>
<tr>
<td>A. A. Shafie, M.N. Kasyfi and N. I. Taufik Y</td>
<td></td>
</tr>
<tr>
<td>4. Development of Cooperative Mini Robot</td>
<td>21</td>
</tr>
<tr>
<td>Amir A. Shafie, Siti E.M.Z and Shazeela A</td>
<td></td>
</tr>
<tr>
<td>5. Humanoid Robot Arm</td>
<td>26</td>
</tr>
<tr>
<td>Amir A. Shafie and Mohd N. Y.</td>
<td></td>
</tr>
<tr>
<td>6. Designing Human Robot Interaction for Emotionally Expressive</td>
<td>32</td>
</tr>
<tr>
<td>Robotic Hear AMIR-III</td>
<td></td>
</tr>
<tr>
<td>A. Iqbal, A. A. Shafie, and M. R. Khan</td>
<td></td>
</tr>
<tr>
<td>7. An Overview of Fuzzy Based Person Following Robot</td>
<td>38</td>
</tr>
<tr>
<td>T. Alamgir, I. J. Alfar and M. M. Rashid</td>
<td></td>
</tr>
<tr>
<td>8. Mechanical Design of a Person Following Robot</td>
<td>43</td>
</tr>
<tr>
<td>Tarik Bin Alamgir, Ibrahim Jawad Alfar and Muhammad Mahbubur Rashid</td>
<td></td>
</tr>
</tbody>
</table>
9. Development of Fuzzy Based Person Following Robot part 2 49
 Tarik Bin Alamgir, Ibrahim Jawad Alfar and Muhammad
 Mahbubur Rashid

10. Mobile Robot for Fined Tube Inspection 56
 Muhammad Mahbubur Rashid

11. Robot Aided Upper Limb Rehabilitation System: Mechanical Design 64
 Shahrul Na’im Sidek, Hidayatullah Mohamed Nawi

12. Robot Aided Upper Limb Rehabilitation System: Electronics for
 Sensors and Actuators 69
 Shahrul Na’im Sidek, Khairul Anwar Khalid

13. Robot Aided Upper Limb Rehabilitation System: Results and
 Analysis 73
 Shahrul Na’im Sidek

 Raisuiddin Khan, Mitsuru Watanabe and Masum Billah

15. Multiple Hexapod Robot and Collaborative communication 86
 Raisuiddin Khan, Masum Billah and Mohiuddin Ahmed

16. Autonomous Unicycle Robot Using Reaction Wheel Pendulum:
 Mechanical Design 94
 Atika Adrina Teepol, Nur Fadhilah Mohd Fauzey, Shahrul Na’im Sidek,
 Yasir Mohd Mustafah

17. Autonomous Unicycle Robot Using Reaction Wheel Pendulum:
 Controller Design 103
 Nur Fadhilah Mohd Fauzey, Atika Adrina Teepol, Shahrul Na’im Sidek,
 Yasir Mohd Mustafah
19. Develop an Algorithm for Goal Finding Robot using Reinforcement Learning
M. Kamal, R. Khan, S. Bazuhair and M. Billah

20. Design and Development of 2 Fingers Robotic Hand Actuated by Active Grasping Data
MdMozasser Rahman¹, MohdZoolfadjli B MdSalleh

21. Design and Development of Interactive Fish Robot
MdMozasser Rahman¹, RizaMuhida and Mohammad Zukhair b MohdNazmi

22. Design and Development of A Digger Robot
MdMozasser Rahman, MohdRuzaini Bin AbdRalim and Others

23. Glass Wall Cleaning Robot: A Review
Md Mozasser Rahman, Ahmed Murgab Mohammed Mahil, Norsofiana Bt Umar and Nurul Izzati Bt Samsuddin

24. Glass Wall Cleaning Robot: -Electrical design and control
Md Mozasser Rahman, Ahmed Murgab Mohammed Mahil, Norsofiana Bt Umar and Nurul Izzati Bt Samsuddin

25. Glass Wall Cleaning Robot: -Electrical design and control
M. M. Rahman, M. R. b A. Ralim

26. Development of Robotic Manipulator to assist human using brain signal
Mahbuba Hossain, Raisuddin Khan, and Masum Billah

27. Glass Wall Cleaning Robot: Mechanical Design
Mahbuba Hossain Raisuddin Khan, and Masum Billah
28. Intelligent SCADA Based Monitoring Scheme for Low Voltage Distribution System 210
M. J. E. Salami, A. M. Aibinua, Mohd Shafie Bin Sani and Nurfaizal Bin Wahi

29. Intelligent SCADA Based Monitoring Scheme for Low Voltage Distribution System 218
Abdullah Ayodele Isqel and Momoh Jimoh Eyiomika Salami.

30. Autonomous Goal Finding Robot 227
M. Kamal, Md. R. Khan, Faisal and M. Billah

31. Intelligent SCADA Based Pipe Monitoring System 236
M. J. E. Salami, A. M. Aibinua, Mohd Shafie Bin Sani and Nurfaizal Bin Wahi

32. Path Tracking of Car Like Mobile Robot 250
A. A. Isqela and M. J. E. Salami

33. A New Energy Efficient Building System 255
M. J. E. Salami, Md. R. Khan, O. A. Abdulquadrc

34. Automatic Car Parking System 262
M. J. E. Salami, Md. R. Khan and O. A. Abdulquadria

35. Anthropomorphic biped robot 267
A. A. Shafie, M. F. Baharudin
CHAPTER 21
Design and Development of Interactive Fish Robot
Md Mozasser Rahman¹, Riza Muhida and Mohammad Zukhair b Mohd Nazmi
Department of Mechatronics Engineering, IIUM, Malaysia
¹mozasser@iiium.edu.my

21.1 Introduction

In recent years, bio-inspired robotics field has grown as a challenging new research topic. The aim is to develop robots which combine bioscience and robotics. Fish-like robots can be considered as bio-inspired underwater robot. Like other underwater robots it can be used in the fields of ocean development, ocean investigation, and marine environmental protection as well as entertainments. Fish robots must have the similar characteristics of underwater robots and additional higher efficiency and propulsive performance as well as fish like performance. This chapter describes a step-by-step method of the development of a fish robot. First the mechanical structure based on the simple model of a fish was developed and then suitable actuators, sensor and control system added. Finally the performance was tested by simulation with MATLAB and in a (swimming) pool.

21.2 Mechanical Structure

The body of the robot is made of aluminum. It consists of three segments. Each segment has three servo motors to move the robot. The head is made of plastic and wrapped with the fiber glass. The total weight of the whole robot including the electronic components is estimated to be 3 kg.

The system architecture of the robot is shown in Fig. 1. It consists of a body which is the head, the body and the tail.

Fig.1 3D design

21.3 System Mechanism

For simple structure and easy control of the fish robot, a simple model of fish is considered where the fish robot swim by moving only the tail, although the real fish move using not only tail fin but also pectoral fins or ventral fins.