MECHATRONICS BOOK SERIES: ROBOTICS AND AUTOMATION

Editors
Rini Akmeliawati
Wahju Sediono
Nahrul Khair Alang Md. Rashid

IIUM Press
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>ii</td>
</tr>
<tr>
<td>Editor</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Content</td>
<td>v</td>
</tr>
<tr>
<td>1. Visual Tracking for Human Face</td>
<td>1</td>
</tr>
<tr>
<td>A.A. Shafie, Iqbal and M.R. Khan</td>
<td></td>
</tr>
<tr>
<td>2. Robot Design : A Case Study of Team Learning Experience and Outcome</td>
<td>7</td>
</tr>
<tr>
<td>A.A. Shafie</td>
<td></td>
</tr>
<tr>
<td>3. Development Neck Support for Humanoid Robot Head</td>
<td>14</td>
</tr>
<tr>
<td>A. A. Shafie, M.N. Kasyfi and N. I. Taufik Y</td>
<td></td>
</tr>
<tr>
<td>4. Development of Cooperative Mini Robot</td>
<td>21</td>
</tr>
<tr>
<td>Amir A. Shafie, Siti E.M.Z and Shazeela A</td>
<td></td>
</tr>
<tr>
<td>5. Humanoid Robot Arm</td>
<td>26</td>
</tr>
<tr>
<td>Amir A. Shafie and Mohd N. Y.</td>
<td></td>
</tr>
<tr>
<td>6. Designing Human Robot Interaction for Emotionally Expressive Robotic</td>
<td>32</td>
</tr>
<tr>
<td>Hear AMIR-III</td>
<td></td>
</tr>
<tr>
<td>A. Iqbal, A. A. Shafie, and M. R. Khan</td>
<td></td>
</tr>
<tr>
<td>7. An Overview of Fuzzy Based Person Following Robot</td>
<td>38</td>
</tr>
<tr>
<td>T. Alamgir, I. J. Alfar and M. M. Rashid</td>
<td></td>
</tr>
<tr>
<td>8. Mechanical Design of a Person Following Robot</td>
<td>43</td>
</tr>
<tr>
<td>Tarik Bin Alamgir, Ibrahim Jawad Alfar and Muhammad Mahbubur Rashid</td>
<td></td>
</tr>
</tbody>
</table>
9. **Development of Fuzzy Based Person Following Robot part 2**
 Tarik Bin Alamgir, Ibrahim Jawad Alfar and Muhammad Mahbubur Rashid

10. **Mobile Robot for Fined Tube Inspection**
 Muhammad Mahbubur Rashid

11. **Robot Aided Upper Limb Rehabilitation System: Mechanical Design**
 Shahrul Na’im Sidek, Hidayatullah Mohamed Nawi

 Shahrul Na’im Sidek, Khairul Anwar Khalid

13. **Robot Aided Upper Limb Rehabilitation System: Results and Analysis**
 Shahrul Na’im Sidek

14. **Snake Robot Locomotion in Narrow Space: A Review**
 Raisuddin Khan, Mitsuru Watanabe and Masum Billah

15. **Multiple Hexapod Robot and Collaborative communication**
 Raisuddin Khan, Masum Billah and Mohiuddin Ahmed

16. **Autonomous Unicycle Robot Using Reaction Wheel Pendulum: Mechanical Design**
 Atika Adriana Teeple, Nur Fadhilah Mohd Fauzey, Shahrul Na’im Sidek, Yasir Mohd Mustafah

17. **Autonomous Unicycle Robot Using Reaction Wheel Pendulum: Controller Design**
 Nur Fadhilah Mohd Fauzey, Atika Adriana Teeple, Shahrul Na’im Sidek, Yasir Mohd Mustafah
19. **Develop an Algorithm for Goal Finding Robot using Reinforcement Learning**
 M. Kamal, R. Khan, S. Bazuhair and M. Billah
 118

20. **Design and Development of 2 Fingers Robotic Hand Actuated by Active Grasping Data**
 MdMozasser Rahman, MohdZoolfadli B MdSalleh
 126

21. **Design and Development of Interactive Fish Robot**
 MdMozasser Rahman, RizaMuhida and Mohammad Zukhair b MohdNazmi
 144

22. **Design and Development of A Digger Robot**
 MdMozasser Rahman, MohdRuzaini Bin AbdRalim and Others
 154

23. **Glass Wall Cleaning Robot: A Review**
 Md Mozasser Rahman, Ahmed Murgab Mohammed Mahil, Norsofiana Bt Umar and Nurul Izzati Bt Samsuddin
 170

24. **Glass Wall Cleaning Robot: -Electrical design and control**
 Md Mozasser Rahman, Ahmed Murgab Mohammed Mahil, Norsofiana Bt Umar and Nurul Izzati Bt Samsuddin
 177

25. **Glass Wall Cleaning Robot: -Electrical design and control**
 M. M. Rahman, M. R. b A. Ralim
 187

26. **Development of Robotic Manipulator to assist human using brain Signal**
 Mahbuba Hossain, Raisuddin Khan, and Masum Billah
 198

27. **Glass Wall Cleaning Robot: Mechanical Design**
 Mahbuba Hossain Raisuddin Khan, and Masum Billah
 204
28. Intelligent SCADA Based Monitoring Scheme for Low Voltage Distribution System
M. J. E. Salami, A. M. Aibinua, Mohd Shafie Bin Sani and Nurfaizal Bin Wahi

29. Intelligent SCADA Based Monitoring Scheme for Low Voltage Distribution System
Abdul Mateef Ayodele Isqel and Momoh Jimoh Eyiomika Salami.

30. Autonomous Goal Finding Robot
M. Kamal, Md. R. Khan, Faisal and M. Billah

31. Intelligent SCADA Based Pipe Monitoring System
M. J. E. Salami, A. M. Aibinua, Mohd Shafie Bin Sani and Nurfaizal Bin Wahi

32. Path Tracking of Car Like Mobile Robot
A. A. Isqela and M. J. E. Salami

33. A New Energy Efficient Building System
M. J. E. Salami, Md. R. Khan, O. A. Abdulquadric

34. Automatic Car Parking System
M. J. E. Salami, Md. R. Khan and O. A. Abdulquadria

35. Anthropomorphic biped robot
A. A. Shafie, M. F. Baharudin
CHAPTER 20
Design and Development of Two Fingers Robotic Hand Actuated by
Active Grasping Data

Md Mozasser Rahman1, Mohd Zoolfadli B Md Salleh
Department of Mechatronics Engineering, IIUM, Malaysia
1mozasser@iium.edu.my

20.1 Introduction

2-finger robotic hands (a gripper) is a part of robotic hand that physically interacts with the
environment. Grippers are utilized to grasp object, usually the work piece, and hold it during the
work cycle. Grippers of various types exist. If surface conditions allows, vacuum suction and
electromagnetic gripper can be used, for example in handling automobile windshield and body parts
in the factory. As gripper parts size exceeds the order of 100 gms, a gripper jaws are custom-made
to ensure a secure hold (William, 2006).

Grippers, which act like a small pinchers, have two or three unarticulated fingers called jaws,
which either pivot or remain parallel during open/close motions as illustrated in Fig. 1 below.

\begin{center}
\begin{tabular}{|c|c|}
\hline
Number of Fingers (Jaws) & \textbf{2} & \textbf{3} \\
\hline
Jaw Style & Parallel & Pivot \\
\hline
\end{tabular}
\end{center}

Fig. 1 Finger robotic hand

In this project however, the constructions of the gripper is more to human finger and less to the
gripper found in pick and place robot. Even though the objective of gripping objects didn’t change,
the mechanism of human finger that is implemented in the design will allow further development of
more complex gripping mechanism. Each joint and link in the robotic fingers is analogous to the
real human hand.

Actual grasping is a task whereby the grippers are needed to grasp a physical object. The task
can be represented by levels of task that need to be achieved. For example, the task of grasping,
lifting and replacing a glass of water can be divided into several phases: