MECHATRONICS BOOK SERIES:
ROBOTICS AND AUTOMATION

Editors
Rini Akmeliawati
Wahju Sediono
Nahrul Khair Alang Md. Rashid

IIUM Press
TABLE OF CONTENTS

Preface i
Acknowledgement ii
Editor iii
Table of Content v
1. Visual Tracking for Human Face 1
 A.A. Shafie, Iqbal and M.R. Khan

2. Robot Design : A Case Study of Team Learning Experience and Outcome 7
 A.A. Shafie

3. Development Neck Support for Humanoid Robot Head 14
 A. A. Shafie, M.N. Kasyfi and N. I. Taufik Y

4. Development of Cooperative Mini Robot 21
 Amir A. Shafie, Siti E.M.Z and Shazeela A

5. Humanoid Robot Arm 26
 Amir A. Shafie and Mohd N. Y.

 A. Iqbal, A. A. Shafie, and M. R. Khan

7. An Overview of Fuzzy Based Person Following Robot 38
 T. Alamgir, I. J. Alfar and M. M. Rashid

8. Mechanical Design of a Person Following Robot 43
 Tarik Bin Alamgir, Ibrahim Jawad Alfar and Mohammad Mahbubur Rashid
<table>
<thead>
<tr>
<th>9.</th>
<th>Development of Fuzzy Based Person Following Robot part 2</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tarik Bin Alamgir, Ibrahim Jawad Alfar and Muhammad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mahbubur Rashid</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Mobile Robot for Fined Tube Inspection</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Muhammad Mahbubur Rashid</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Robot Aided Upper Limb Rehabilitation System:</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Mechanical Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shahrul Na’im Sidek, Hidayatullah Mohamed Nawi</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Robot Aided Upper Limb Rehabilitation System:</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Electronics for Sensors and Actuators</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shahrul Na’im Sidek, Khairul Anwar Khalid</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Robot Aided Upper Limb Rehabilitation System:</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Results and Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shahrul Na’im Sidek</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Snake Robot Locomation in Narrow Space: A Review</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Raisuddin Khan, Mitsuru Watanabe and Masum Billah</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Multiple Hexapod Robot and Collaborative communication</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Raisuddin Khan, Masum Billah and Mohiuddin Ahmed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pendulum: Mechanical Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atika Adrina Teepol, Nur Fadhilah Mohd Fauzy, Shahrul</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Na’im Sidek, Yasir Mohd Mustafah</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Autonomous Unicycle Robot Using Reaction Wheel</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Pendulum: Controller Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nur Fadhilah Mohd Fauzy, Atika Adrina Teepol, Shahrul</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Na’im Sidek, Yasir Mohd Mustafah</td>
<td></td>
</tr>
</tbody>
</table>
19. Develop an Algorithm for Goal Finding Robot using Reinforcement Learning
 M. Kamal, R. Khan, S. Bazuahir and M. Billah

20. Design and Development of 2 Fingers Robotic Hand Actuated by Active Grasping Data
 MdMozasser Rahman, MohdZoolfadhli B MdSalleh

21. Design and Development of Interactive Fish Robot
 MdMozasser Rahman, RizaMuhida and Mohammad Zukhair b MohdNazmi

22. Design and Development of A Digger Robot
 MdMozasser Rahman, MohdRuzaini Bin AbdRalim and Others

23. Glass Wall Cleaning Robot: A Review
 Md Mozasser Rahman, Ahmed Murgab Mohammed Mahil, Norsofiana Bt Umar and Nurul Izzati Bt Samsuddin

24. Glass Wall Cleaning Robot: -Electrical design and control
 Md Mozasser Rahman, Ahmed Murgab Mohammed Mahil, Norsofiana Bt Umar and Nurul Izzati Bt Samsuddin

25. Glass Wall Cleaning Robot: -Electrical design and control
 M. M. Rahman, M. R. b A. Ralim

26. Development of Robotic Manipulator to assist human using brain signal
 Mahbuba Hossain, Raisuddin Khan, and Masum Billah

27. Glass Wall Cleaning Robot: Mechanical Design
 Mahbuba Hossain Raisuddin Khan, and Masum Billah
28. Intelligent SCADA Based Monitoring Scheme for Low Voltage Distribution System
 M. J. E. Salami, A. M. Aibinua, Mohd Shafie Bin Sani and Nurfaizal Bin Wahi
 210

29. Intelligent SCADA Based Monitoring Scheme for Low Voltage Distribution System
 Abdullateef Ayodele Isqeeel and Momoh Jimoh Eyiomika Salami.
 218

30. Autonomous Goal Finding Robot
 M. Kamal, Md. R. Khan, Faisal and M. Billah
 227

31. Intelligent SCADA Based Pipe Monitoring System
 M. J. E. Salami, A. M. Aibinua, Mohd Shafie Bin Sani and Nurfaizal Bin Wahi
 236

32. Path Tracking of Car Like Mobile Robot
 A. A. Isqeeela and M. J. E. Salami
 250

33. A New Energy Efficient Building System
 M. J. E. Salami, Md. R. Khan, O. A. Abdulquadric
 255

34. Automatic Car Parking System
 M. J. E. Salami, Md. R. Khan and O. A. Abdulquadria
 262

35. Anthropomorphic biped robot
 A. A. Shafie, M. F. Baharudin
 267
CHAPTER 18
Autonomous Unicycle Robot Using Reaction Wheel Pendulum: Integration and Results

Nur Fadhillah Mohd Fauzey, Atika Adrina Teepol, Shahrul Na'im Sidek, Yasir Mohd Mustafah
International Islamic University Malaysia, P.O. Box 10, 50728, Kuala Lumpur

18.1 Introduction

The previous two chapters describ the mechanical and controller design of the unicycle. In this chapter we discuss on the integration between the two designs and presents results related to the unicycle robot balancing.

18.2 Design Integration

There two main concern when integrating the mechanical and the controller part of the unicycle robot. They are; (1) the placements and reliability of the sensors and (2) the driver for the motors.

18.2.1 Sensor Testing

18.2.1.1 Placement of IMU 5 DOF sensor

IMU sensor must be mounted perpendicular to the surface. Hence, Fig. 1 shows how the sensor is placed on the unicycle robot body.

![IMU mounted perpendicularly to the ground](image)

Fig. 1 IMU mounted perpendicularly to the ground

18.2.1.2 Calibration and Sensor Reading

Next, the sensor is calibrated. Using the ADC built into the PIC, the sensor output can be captured by the PIC and displayed on the computer using PICBOOTLOADER+. The source code for calibration and reading the sensor is as below: