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Abstract. In this paper, we introduce a method to solve linear stiff IVPs. The sug-
gested method, which we call modified homotopy perturbation method, can be con-
sidered as an extension of the homotopy perturbation method (HPM) which is very
efficient in solving a varety of differential and algebraic equations. In this work, a class
of linear stiff initial value problems (IVPs) are solved by the classical homotopy per-
turbation method (HPM), modified homotopy perturbation method and an explicit
Runge-Kutta-type method (RK). Numerical comparisons demonstrate the limitations
of HPM and promising capability of the MHPM for solving stiff IVPs. The results
prove that the modified HPM is a powerful tool for the solution of linear stiff IVPs.

1 Intruduction

Homotopy perturbation method [1–6] is an analytical method which can be ap-
plied to the solution of linear, nonlinear deterministic and stochastic operator
equations. HPM deforms a difficult problem into an infinite set of problems
which are easier to solve without any need to transform nonlinear terms. The
applications of HPM in nonlinear problems have been demonstrated by many re-
searchers. In recent years, much attention has been devoted to the application of
the HPM, to the solutions of various scientific models[8–11]. HPM yields rapidly
convergent series solutions [12]. Very recently, Chowdhury et al. [13], Chowd-
hury and Hashim [14],Hashim and Chowdhury [15] and Hashim et al. [16] were
the first to successfully apply the multistage homotopy-perturbation method
(MHPM) to the chaotic Lorenz system, Chen system and a class of systems of
ODEs. The mathematical equations modelling many real-world physical phe-
nomena are often stiff equations, i.e. equations with a wide range of temporal
scales. The numerical methods for solving stiff equations must have good accu-
racy and wide region of stability. Hojjati et al. [17] developed a multistep method
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for solving stiff systems of initial value problems (IVPs). Knowing that the clas-
sical explicit fourth-order Runge-Kutta method is insufficient for the solution of
stiff IVPs, Ahmad et al. [18] presented an explicit Taylor-like method for solv-
ing stiff IVPs. In Ahmad and Yaacob [19], an explicit Runge-Kutta-like method
is developed and shown to be efficient for the solution of stiff ODEs. Very re-
cently, Nie et al. [20] presented a class of efficient semi-implicit schemes for stiff
reaction-diffusion equations. A variable-step size algorithm for stiff systems has
been proposed recently by Jannelli and Fazio [21]. In [22], a class of methods
having properties very close to those of traditional Runge-Kutta methods were
developed. Butcher and Hojjati [23] devised a class of second derivative methods
possessing Runge-Kutta stability property. Hojjati et al. [24] presented a new
class of second derivative multistep methods with improved stability region.

All of the methods mentioned above need some sort of discretizations. In this
work, the HPM was treated as an algorithm for approximating the solutions in
a sequence of time intervals (i.e. time step). We call this approach as modified
HPM (MHPM). In this task, we shall apply the MHPM for the first time to the
solutions of stiff linear IVPs. Comparisons will be made against the classical
HPM and an explicit Runge-Kutta method to determine the performance of
MHPM.

2 Solution approaches

In this section, the HPM is modified in order to obtain the approximate solutions
for solving stiff initial value problems:

y′ = f(t, y) with y(0) = y0, (1)

where f(t, y) may be a linear or non-linear function.
Now we first write Eq. (1) in the operator form

Ly = f(t, y), (2)

where L = d/dt is easily invertible.
According to HPM, we construct a homotopy into Eq. (2) which satisfies

the following relation

Ly − Lx0 + p[Lx0 − f(t, y)] = 0, (3)

where p ∈ [0, 1] is an embedding parameter and x0 is an initial approximation
which generally satisfies the initial conditions. It is obvious that when the ho-
motopy parameter p = 0, Eq. (3) becomes a linear equation and when p = 1
we get the original nonlinear equation. According to HPM, the solution form of
(1) is written as

y(t) = u0(t) + pu1(t) + p2u2(t) + · · · , (4)
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where uj(j = 0, 1, 2, 3, . . .) are functions yet to be determined. Substituting (4)
into (3) and collecting terms of the same powers of p, we have

Lu0 − Lx0 = 0, u0(t0) = y0 (5)

Lu1 + Lx0 − f(t, u0) = 0, u1(t0) = 0, (6)

Lu2 − f(t, u1) = 0, u2(t0) = 0, (7)

etc. Now we can easily solve the above equations for u1, u2, and u3 etc. using
the Maple package. Finally, the series solution can be written as

y ' u0 + u1 + u2 + u3 + · · · . (8)

The convergence of series (8) has been proven by He in his papers [2].
Now, we treat the HPM as an algorithm for approximating the dynami-

cal response in a sequence of time intervals (i.e. time step) [0, t1), [t1, t2), . . .,
[tm−1, T ) such that the initial condition in [t∗, tm+1) is taken to be the condition
at t∗.

3 Numerical application

In this section, we shall demonstrate how well the MHPM compares with the
Runge-Kutta-like method of [19] for the solutions of linear stiff IVPs. The HPM
iterative algorithm is coded in the computer algebra package Maple. The Maple
environment variable Digits controlling the number of significant digits is set
to 16 in all the calculations done in this paper.

3.1 Problem 1

First, we consider the simple linear equation,

dy

dt
= −30y with y(0) =

1

3
, (9)

whose exact solution is given by

y =
1

3
e−30t. (10)

According to HPM, we construct a homotopy into Eq. (9) which satisfies the
following relation

dy

dt
− dx0

dt
+ p[

dx0

dt
+ 30y] = 0, (11)

where p ∈ [0, 1] is an embedding parameter and x0 is an initial approxima-
tion which generally satisfies the initial conditions. It is obvious that when the
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homotopy parameter p = 0, Eq. (11) becomes a linear equation and when p = 1
we get the original nonlinear equation. According to HPM, the solution form of
(9) is written as

y(t) = u0(t) + pu1(t) + p2u2(t) + · · · , (12)

where uj(j = 0, 1, 2, 3, . . .) are functions yet to be determined. Let us consider
the initial approximation as

x0(t) = u0(t) =
1

3
. (13)

Substituting the series solution (12) and (13) into (11) and collecting terms of
the same powers of p, we have

du1

dt
+ 30u0 = 0, u1(0) = 0, (14)

du2

dt
+ 30u1 = 0, u2(0) = 0, (15)

du3

dt
+ 30u2 = 0, u3(0) = 0, (16)

du4

dt
+ 30u3 = 0, u4(0) = 0, (17)

etc.
Solving the differential equations (14)–(17) we obtain,

u0(t) =
1

3
, u1(t) = −10t, u2(, t) = 150t2, u3(t) = −1500t3, u3(t) = 11250t4

etc.
The 5-term HPM solution on the first subinterval is easily obtained and

given as

φ5 =
1

3
− 10t + 150t2 − 1500t3 + 11250t4. (18)

This HPM series solution fails to produce reasonable results as shown in the
third column of Table 1. However, the HPM solutions can be improved if we
treat the classic HPM as an algorithm for approximating the solutions of the
stiff equation in a sequence of time intervals (i.e. time steps). From the results
presented in Table 1 we see that the MHPM at the time step h = 10−3 produces
better solutions compared to that obtained by the Runge-Kutta-like method
[19].
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Table 1. MHPM solutions using 5 terms as compared with the exact solutions, the classical HPM
solutions and solutions from the explicit Runge-Kutta-like method [19] for example 1.

t Exact, (10) HPM, φ5 RK [19], h = 10−3 MHPM, φ5, h = 10−3

0.1 1.65956895E-02 4.58333333E-01 1.66028745E-02 1.65956907E-02
0.2 8.26250726E-04 1.03333333E+01 8.26966326E-04 8.26250050E-04
0.3 4.11366014E-05 6.14583333E+01 4.11900544E-05 4.11365300E-05
0.4 2.04807078E-06 2.12333333E+02 2.05161992E-06 2.04807700E-06
0.5 1.01967440E-07 5.48458333E+02 1.02188364E-07 1.01964600E-07
0.6 5.07665991E-09 1.18233333E+03 5.08986175E-09 5.07588000E-09
0.7 2.52752014E-10 2.25345833E+03 2.53519008E-10 2.52645000E-10
0.8 1.25837818E-11 3.92833333E+03 1.26274328E-11 1.25801000E-11
0.9 6.26509606E-13 6.40045833E+03 6.28955048E-13 6.26590000E-13
1.0 3.11920766E-14 9.890333333E+03 3.13273852E-14 3.11940000E-14

3.2 Problem 2

Finally, we consider the linear nonhomogeneous initial value problem considered
in [19],

dy

dt
= −100y + e−2t with y(0) = 0. (19)

The exact solution is

y =
1

98
e−100t(−1 + e98t). (20)

By the same manipilations as in the previous example, the 6-term HPM solution
on the first subinterval is easily obtained and given as

φ6 = −156250000e−2t − 125000000

3
t5 +

312500000

3
t4

− 625000000

3
t3 + 312500000t2 − 312500000t + 156250000. (21)

The solutions based on MHPM is found for the time steps h = 10−2 and
h = 10−3 as tabulated in Table 2. The MHPM solutions at h = 10−3 are of
comparable accuracy with that of the Runge-Kutta-like method of [19] at the
same step size.

4 Conclusions

In this paper, we presented the modified homotopy perturbation method (MHPM)
for solving linearstiff IVPs. Direct applications of the classical HPM can fail for
stiff problems. The MHPM is shown here to be a promising alternative method
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Table 2. MHPM solutions using 6 terms as compared with the exact solutions and solutions from
the explicit Runge-Kutta-like method [19] for example 2.

t Exact, (20) RK [19], h = 10−3 MHPM φ5, h = 10−2 MHPM, φ6, h = 10−3

0.1 0.00835393217 0.00835393019 0.00846848100 0.00835393900
0.2 0.00684000045 0.00684000366 0.00693387200 0.00684000900
0.3 0.00560011874 0.00560012136 0.00567697500 0.00560012600
0.4 0.00458498943 0.00458499158 0.00464791500 0.00458499500
0.5 0.00375387185 0.00375387361 0.00380538800 0.00375387600
0.6 0.00307341033 0.00307341177 0.00311558970 0.00307341380
0.7 0.00251629555 0.00251629673 0.00255082750 0.00251629550
0.8 0.00206016855 0.00206016952 0.00208844460 0.00206017130
0.9 0.00168672335 0.00168672414 0.00170987040 0.00168672750
1.0 0.00138097228 0.00138097293 0.00139992420 0.00138097090

for stiff equations. In addition to the choice of time stepsize, the MHPM has the
number of terms of the series solution as an extra parameter for controlling the
accuracy of solutions. We note that the MHPM solutions were computed via a
simple algorithm with less amount of computations and without any need for
perturbation techniques, special transformations, linearization or discretization.
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