MECHATRONICS BOOK SERIES ROBOTICS AND AUTOMATION Rini Akmeliawati Wahju Sediono Nahrul Khair Alang Md. Rashid **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA # MECHATRONICS BOOK SERIES: ROBOTICS AND AUTOMATION ## **Editors** Rini Akmeliawati Wahju Sediono Nahrul Khair Alang Md. Rashid ## Published by: IIUM Press International Islamic University Malaysia ## First Edition, 2011 ©HUM Press, HUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Rini Akmeliawati, Wahju Sediono & Nahrul Khair Alang Md. Rashid: Mechatronics Book Series Robotics and Automation ISBN: 978-967-418-152-9 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) ## Printed by: ## HUM PRINTING SDN.BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com ## TABLE OF CONTENTS | Pro | eface | i | |------------------|--|--------------| | Ac | knowledgement | ii | | Ed | Editor | | | Table of Content | | \mathbf{v} | | 1. | Visual Tracking for Human Face
A.A. Shafie, Iqbal and M.R. Khan | 1 | | 2. | Robot Design: A Case Study of Team Learning Experience
Outcome
A.A. Shafic | and | | 3. | Development Neck Support for Humanoid Robot Head
A. A. Shafie, M.N. Kasyfi and N. I. Taufik Y | 14 | | 4. | Development of Cooperative Mini Robot
Amir A. Shafie, Siti E.M.Z and Shazeela A | 21 | | 5. | Humanoid Robot Arm
Amir A. Shafie and Mohd N. Y. | 26 | | в. | Designing Human Robot Interaction for Emotionally Expre
Robotic Hear AMIR-III
A. Iqbal, A. A. Shafie, and M. R. Khan | essive
32 | | 7. | An Overview of Fuzzy Based Person Following Robot T. Alamgir, I. J. Alfar and M. M. Rashid | 38 | | 8. | Mechanical Design of a Person Following Robot Tarik Bin Alamgir, Ibrahim Jawad Alfar and Muhammad Mahbubur Rashid | 43 | | 9, | Development of Fuzzy Based Person Following Robot part 2 Tarik Bin Alamgir, Ibrahim Jawad Alfar and Muhammad Mahbubur Rashid | 49 | |-----|--|-------------| | 10. | Mobile Robot for Fined Tube Inspection Muhammad Mahbubur Rashid | 56 | | 11. | Robot Aided Upper Limb Rehabilitation System: Mechanical Do
Shahrul Na'im Sidek, Hidayatullah Mohamed Nawi | esign
64 | | 12. | Robot Aided Upper Limb Rehabilitation System: Electronics
Sensors and Actuators
Shahrul Na'im Sidek, Khairul Anwar Khalid | for
69 | | 13. | Robot Aided Upper Limb Rehabilitation System: Results
Analysis
Shahrul Na'im Sidek | and
73 | | 14. | Snake Robot Locomation in Narrow Space: A Review Raisuddin Khan, Mitsuru Watanabe and Masum Billah | 79 | | 15. | Multiple Hexapod Robot and Collaborative communication Raisuddin Khan, Masum Billah and Mohiuddin Ahmed | 86 | | 16. | . Autonomous Unicycle Robot Using Reaction Wheel Pendu
Mechanical Design
Atika Adrina Teepol, Nur Fadhilah Mohd Fauzey, Shahrul Na'im S
Yasir Mohd Mustafah | 94 | | 17. | . Autonomous Unicycle Robot Using Reaction Wheel Pendu
Controller Design
Nur Fadhilah Mohd Fauzey, Atika Adrina Teepol, Shahrul Na'im S
Yasir Mohd Mustafah | 103 | ## HISTORICAL BACKGROUND AND EDUCATION | 19. Develop an Algorithm for Goal Finding Robot using Reinford Learning | ement
118 | |---|---------------| | M. Kamal, R. Khan, S. Bazuhair and M. Billah | | | 20. Design and Development of 2 Fingers Robotic Hand Actual Active Grasping Data | ted by
126 | | MdMozasser Rahman ¹ ,MohdZoolfadli B MdSalleh | | | 21. Design and Development of Interactive Fish Robot | 144 | | MdMozasser Rahman ¹ ,RizaMuhida and Mohammad Zukhair MohdNazmi | b | | 22. Design and Development of A Digger Robot | 154 | | MdMozasser Rahman, MohdRuzaini Bin AbdRalim and Othe | rs | | 23. Glass Wall Cleaning Robot: A Review | 170 | | Md Mozasser Rahman, Ahmed Murgab Mohammed Mahil, | | | Norsofiana Bt Umar and Nurul Izzati Bt Samsuddin | | | 24. Glass Wall Cleaning Robot: -Electrical design and control | 177 | | Md Mozasser Rahman, Ahmed Murgab Mohammed Mahil,
Norsofiana Bt Umar and Nurul Izzati Bt Samsuddin | | | 25. Glass Wall Cleaning Robot: -Electrical design and control M. M. Rahman, M. R. b A. Ralim | 187 | | 26. Development of Robotic Manipulator to assist human using Signal Mahbuba Hossain, Raisuddin Khan, and Masum Billah | brain
198 | | 27. Glass Wall Cleaning Robot: Mechanical Design Mahbuba Hossain Raisuddin Khan, and Masum Billah | 204 | | 28. | Intelligent SCADA Based Monitoring Scheme for Low Vo Distribution System M. J. E. Salami, A. M. Aibinua, Mohd Shafie Bin Sani and Nurfaizal Bin Wahi | ltage
210 | |-----|--|----------------| | | Truffalzar Bin Walli | | | 29. | Intelligent SCADA Based Monitoring Scheme for Low Vo
Distribution System
Abdullateef Ayodele Isqeel and Momoh Jimoh Eyiomika Salar | 218 | | 30. | Autonomous Goal Finding Robot
M. Kamal, Md. R. Khan, Faisal and M. Billah | 227 | | 31. | Intelligent SCADA Based Pipe Monitoring System M. J. E. Salami, A. M. Aibinua, Mohd Shafie Bin Sani Nurfaizal Bin Wahi | 236 and | | 32. | Path Tracking of Car Like Mobile Robot
A. A. Isqeela and M. J. E. Salami | 250 | | 33. | A New Energy Efficient Building System
M. J. E. Salami, Md. R. Khan, O. A. Abdulquadric | 255 | | 34. | Automatic Car Parking System
M. J. E. Salami, Md. R. Khan and O. A. Abdulquadria | 262 | | 35. | Anthropomorphic biped robot A. A. Shafie, M. F. Baharudin | 267 | ## **CHAPTER 7** ## An Overview of Fuzzy Based Person Following Robot Tarik Bin Alamgir^{1, a},Ibrahim Jawad Alfar^{2,b}and Muhammad Mahbubur Rashid ^{3,c} ^{1,2,3}Department of Mechatronics Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia atarikbina@gmail.com, bibrahim.alfar@gmail.com, cmahbub@iium.edu.my #### 7.1 Introduction Person tracking is a majorrequirement that requires must overwhelmed by a service robot whileneeds completing various human involved tasks. Such requirement has desires, which cannot be met pleasingly in conventional numerical process. Main remarkably, the robot has to maintain at a convinced safe distance as of the certain person is being tracked and simultaneously be in motion in a smooth way which does not seem to be frightening to the person. This chapter, consequently, introduced the person following robot with its overall system flowchart and dynamic modelingto providegreater idea onachieving smooth and safe person-following activities. ## 7.2 The Person Following Robot: An Overview Person tracking is a invaluable potentiality for a movable robot which cooperates with person. Also, any robot that cooperates with a human needs to demonstrate desired movement besides actions, which is not threatening to a person who never had experience about the robot [1]. For example, a rapid movement of a robot might appear as an unsafe to a person not having earlier interaction with a mobile robotalike by someone who has earlier interaction could predict being an eminent movement of the robot. Referring to a position upon which an aged fellow outfitted with an automated wheelchair necessary to follow a nurse. A constant and uneven robot movement is particularly desired in this fact since the old person along for the ride might get hurt by an unintentional and prompt wheelchair movement. Therefore, this chapter discusses the method to develop a control system to control and smoothen out the movement of a robot while tracking a person and, at the same time, keeping it at a secure distance from the person that is being followed. This control ability has been implemented for the case of a three wheel car following particular person. The developed ability, however, has been modified here to accommodate the case of a robot following a human since the human motion is not always smooth as that of a car, and as an individual detecting and tracking of people is comparatively further difficult unless if the person is equipped with specialized tracking equipment, which is practically inconvenient and not always possible. ## 7.3 The Interaction between Human and Robot: An Overview Interaction process has always been a necessary medium linking between different standard at different circumstances. In order to interface through a wireless network RFID (radio frequency identification)orIR(InfraRed) are the better solutions in using this technology. Primarily RFID is anidentification process which uses the radio waves forrepeatedly identify objects.RFID identification process is a succession to retrieve and store data using RFID tag or RFID transponder in combination of microprocessor and antenna. The antenna authorizes the chip to transmit the credentials information to a reader like radio waves. The reader exchanges the radio waves; reflected back from the RFID tag; into digital information. Thus this information is forwarded to processor for further use.