CURRENT RESEARCH AND DEVELOPMENT IN BIOTECHNOLOGY ENGINEERING AT IIUM **VOLUME III** **Editors:** Md. Zahangir Alam Ahmed Tariq Jameel Azura Amid **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA # CURRENT RESEARCH AND DEVELOPMENT IN BIOTECHNOLOGY ENGINEERING AT HUM (VOLUME III) Editors: Md. Zahangir Alam Ahmed Tariq Jameel Azura Amid Department of Biotechnology Engineering Faculty of Engineering International Islamic University Malaysia # Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Md. Zahangir Alam, Ahmed Tariq Jameel & Azura Amid: Current Reasearch and Development in Biotechnology Engineering at IIUM Volume III ISBN: 978-967-418-144-4 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by : IIUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan # **CONTENTS** | PREFACE | | i | |-----------|--|----| | CHAPTER 1 | OPTIMIZATION OF EXRACTION PROCESS PARAMETERS FOR ANTI-CANCER AGENT FROM Solanum lycopersicum | 1 | | | Azura Amid, Abdul Aziz Ahmad and Raha Ahmad Raus | | | CHAPTER 2 | OPTIMIZATION OF THE EXTRACTION PROCESS PARAMETER FOR KENAF SEEDS OIL TO OBTAIN HIGH OIL YIELD | 11 | | | Azura Amid, Parveen Jamal, Nurul Elyani Mohamad and
Engku Hasmah Engku Abdullah | | | CHAPTER 3 | OPTIMIZATION OF THE EXTRACTION PROCESS PARAMETER TO OBTAIN HIGHEST ANTI-CANCER ACTIVITY FROM KENAF SEEDS | 17 | | | Azura Amid, Parveen Jamal, Nurul Elyani Mohamad and
Engku Hasmah Engku Abdullah | | | CHAPTER 4 | OPTIMIZATION OF HEAT STERILIZATION ON MANGO FRUIT (<i>Mangifera indica</i>) PUREE AND EFFECTS TOWARDS CANCER TREATMENT | 25 | | | Azura Amid, Irwandi Jaswir and Muhd. Ezza Faiez Othman | | | CHAPTER 5 | DETERMINATION OF OPTIMAL RANGE OF POST-INDUCTION TEMPERATURE FOR PRODUCTION OF SOLUBLE RECOMBINANT BROMELAIN IN <i>Escherichia coli</i> USING ONE-FACTOR-AT-A-TIME (OFAT) APPROACH | 33 | | | Azura Amid and Jamil Jamaluddin | | | CHAPTER 6 | AEROBIC BIODEGRADATION OF OIL AND GREASE IN PALM OIL MILL EFFLUENT USING CONSORTIUM OF MICROORGANISMS | 43 | | | Ahmad Tariq Jameel and Alade Abass Olanrewaju | | | CHAPTER 7 | WASTEWATER TREATMENT BY IMMOBILISED CELL SYSTEMS | 53 | | | Ahmad Tariq Jameel and Alade Abass Olanrewaju | | | CHAPTER 8 | BATCH FERMENTATION OF RECOMBINANT
Escherichia coli PRODUCING β -GLUCURONIDASE
USING DIFFERENT CONTROL CONDITION | 61 | | | Mohd Ismail Abdul Karim, Hamzah Mohd Salleh and
Maizirwan Mel | | | CHAPTER 9 | OPTIMIZATION OF PROCESS CONDITION FOR E. coli | 73 | | | FERMENTATION PRODUCING NUCLEOCAPSID | | | | PROTEIN-AVIAN INFLUENZA VIRUS (NP-AIV) | | | | Maizirwan Mel, Md Rashid Shamsuddin, Hamadah Mohd Nur | | | | Lubis, Syarifah Syed Hasan and Suriani Mohd Noor | | | CHAPTER 10 | CELL DISRUPTION IMPROVEMENT OF E. coli
PRODUCING NP-AIV USING HIGH PRESSURE
HOMOGENIZER | 79 | |------------|---|-----| | | Maizirwan Mel, Mohd Rashid Shamsuddin, Hamadah Mohd
Nur Lubis, Sharifah Syed Hasan and Suriani Mohd Noor | | | CHAPTER 11 | SEEDS' OIL AS BIOLUBRICANT Mohamed E. S. Mirghani, I. A. Ahmed, N. A. Kabbashi, S. A. Muyibi, J. I. Daoud and M. A. Mikail | 85 | | CHAPTER 12 | SPECIAL OIL FROM DATE PALM KERNEL Mohamed Elwathig Saeed Mirghani, Nasereldin A. Kabbashi and Nur Ellyana Mohd Noor | 93 | | CHAPTER 13 | GUM ARABIC: A NARRATIVE EMULSIFYING AGENT
Mohamed Elwathig Saeed Mirghani, Maizirwan Mel and
Fatimah Misran | 105 | | CHAPTER 14 | INVESTIGATIONS ON SPIDER HOUSE FOR ANTI
MICROBIAL ACTIVITY
Mohamed Elwathig Saeed Mirghani and Mohamad Zul
Fahmi Zulkifli | 117 | | CHAPTER 15 | EVALUATION ON QUALITY OF HEAT RESISTANCE
CHOCOLATE
Mohamed Elwathig Saeed Mirghani and Maan Fahmi Al-
Khatib | 129 | | CHAPTER 16 | ANTIMICROBIAL PROPERTY OF DATE SEED EXTRACT Mohamed E. S. Mirghani, M. A. Mikail, I. A. Ahmed, M. I. Abdul Karim and J. I. Daoud | 139 | | CHAPTER 17 | PROCESS IMPROVEMENT OF CONVENTIONAL PALM
OIL MILLING: CONTINUOUS COOKER
Azlin Azmi, Mageswari Somasundaram and Dzun Jimat | 146 | | CHAPTER 18 | FOWL CHOLERA VACCINE PRODUCTION:
SCREENING AND OPTIMIZATION OF MEDIA IN
SHAKE FLASK CULTURE
Maizirwan Mel, Mohd Ismail Abdul Karim, Nor Jannah Yob,
Intan Zahrah Samsury, Sharifah Syed Hassan and Akma
Ngah Hamid | 155 | | CHAPTER 19 | FOWL CHOLERA VACCINE PRODUCTION: PROCESS OPTIMIZATION IN LABORATORY SCALE FERMENTER Maizirwan Mel, Mohd Ismail Abdul Karim, Nor Jannah Yob, Intan Zahrah Samsury, Sharifah Syed Hassan and Akma Ngah | 163 | | CHAPTER 20 | PROCESS IMPROVEMENT OF CONVENTIONAL PALM OIL MILLING: DEPULPER Azlin Azmi, Mageswari Somasundaram and Dzun Jimat | 169 | |------------|---|-----| | CHAPTER 21 | DIFFUSION-REACTION OF NUTRIENT IN IMMOBILIZED SLAB BIOCATALYST FOR FIRST AND ZERO ORDER REACTIONS Ahmad Tariq Jameel and RM Syibli Milasi | 175 | | CHAPTER 22 | DIFFUSION-REACTION OF SUBSTRATE IN CYLINDRICAL IMMOBILIZED BIO-CATALYST | 183 | | CHAPTER 23 | Ahmad Tariq Jameel and RM Syibli Milasi DIFFUSION-REACTION OF SUBSTRATE IN IMMOBILIZED SLAB BIOCATALYST FOR MICHAELIS- MENTEN KINETICS | 189 | | CHAPTER 24 | Ahmad Tariq Jameel and RM Syibli Milasi FERMENTATION OF BIOETHANOL FROM SAGO STARCH | 197 | | CHAPTER 25 | Mohamed Ismail Abdul Karim and Husna Muhammad Nadzri
KINETIC STUDY ON VINEGAR PRODUCTION USING
STAR FRUIT JUICE
Mohamed Ismail Abdul Karim and Noor Izzaida Kamaruddin | 203 | | CHAPTER 26 | FERMENTATION OF VINEGAR FROM STAR FRUIT (Averrhoa carambola) Mohamed Ismail Abdul Karim, Farah Izora Jasni and | 207 | | CHAPTER 27 | Parveen Jamal DESIGN AND DEVELOPMENT OF A LAB SCALE BIOREACTOR FOR HEAT INDUCIBLE ENZYME EXPRESSION SYSTEM | 211 | | | Daud Adam, Ahmad Faris Ismail and Hamzah Mohd. Salleh | | | CHAPTER 28 | OPTIMIZATION OF PHYTOCHEMICAL ANTIOXIDANTS IN RBD PALM OLEIN DURING FRYING PROCESS Irwandi Jaswir and Mohd Syakirin Sudin | 219 | | CHAPTER 29 | OPTIMIZATION OF PROCESS PARAMETERS FOR EXTRACTION OF XANTHINE OXIDASE INHIBITOR (XOI) FROM Lycopersicon esculentum Parveen Jamal, Azura Amid, Rasidi Bahardin and Saiful Mohammad Nizam Azmi | 226 | | CHAPTER 30 | PROCESS OPTIMIZATION OF HYDROCOLLOID PRODUCTION FROM SEAWEEDS | 237 | | | Irwandi Jaswir, Mohd Razi Kodin and Parveen Jamal | | | CHAPTER 31 | IMPROVEMENT OF CONVENTIONAL MILLING
PROCESS IN PALM OIL PROCESSING: ROTARY
FILTER PRESS | 245 | | | Azlin Azmi, Koshela Vengadachalam and Dzun Jimat | | |------------|--|-----| | CHAPTER 32 | SCREENING OF FUNGI ON SOLID STATE
BIOCONVERSION OF OIL PALM EMPTY FRUIT
BUNCH FOR PRODUCTION OF CELLULASE | 251 | | | Mohamed Ismail Abdul Karim, Manisya Zauri A. Hamid,
Faridah Yusof and Md Zahangir Alam | | | CHAPTER 33 | SINGLE STAGE STIRRED TANK BIOREACTOR
PRODUCTION OF STAR FRUIT (Averrhoa carambola)
VINEGAR | 259 | | | Mohamed Ismail Abdul Karim, Parveen Jamal and Mohd
Nasir Jamaluddin Ab Rahaman | | | CHAPTER 34 | TREATMENT OF PALM OIL MILL EFFLUENT USING MICROORGANISMS | 269 | | | Mohamed Ismail Abdul Karim, Nurul Aima Daud and Md
Zahangir Alam | | | CHAPTER 35 | COMPARATIVE STUDY OF BIOREACTORS USED FOR PALM OIL MILL EFFLUENT TREATMENT BASED ON CHEMICAL OXYGEN REMOVAL EFFICIENCIES Ahmad T. Jameel, Suleyman A. Muyibi and Alade A. Olanrewaju | 277 | | CHAPTER 36 | EFFECT OF HOMOGENIZATION IN BREAKING | 285 | PROTEIN-CAROTENOID COMPLEXES FOR Parveen Jamal, Irwandi Jaswir, Nurhasri Mulyadi Hashim THE USE OF MODIFIED POLYMERIC POLYHIPE AS 297 306 RELEASING ACTIVE COMPOUNDS and Saiful Mohammad Nizam Azmi Dzun Jimat and Azlin Azmi AN IMMOBILIZED CELL MATRIX CHAPTER 37 INDEX ### CHAPTER 25 ## KINETIC STUDY ON VINEGAR PRODUCTION USING STAR FRUIT JUICE Mohamed Ismail Abdul Karim and Noor Izzaida Kamaruddin Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia ### **ABSTRACT** A study was undertaken to produce Star fruit vinegar (Averrhoa carambola) juice through double stage fermentation with the use of microorganisms namely Saccharomyces cerevisiae and Acetobacter aceti. The star fruit juice with optimum glucose concentration (20%) was used and growth kinetic study of the cultures to optimize operational conditions (agitation speed and inoculums size) in 2L bioreactor for production of star fruit vinegar was conducted .An experimental design using the Central Composite Design by Design Expert software, where the main factors impeller speed(rpm) and inoculums sizes (% inoculums) were optimized affecting the production of acetic acid in fruit juice during fermentation. Sampling of the were done every 12 hours during 4 days of fermentation time to analyze cell concentration (OD 600 nm), Total Cell Number, cell dry weight, reducing sugar, ethanol and acetic acid production. On the different combination of factors for all 9 runs of experiment conducted, it was found optimum production of acetic acid was achieved with agitation speed of 250 rpm and 5 % inoculums sizes where highest ethanol production of 17.8% or 150.34 g/L. and 2.76% acetic acid (TA) was obtained. This combination of parameters produces the highest specific growth rate, μ and highest yield which are 0.859 and 0.342 g/g of the culture was obtained. **Keywords:** Star Fruit Vinegar, Fermented Vinegar, Vinegar Kinetics. ### **INTRODUCTION** Many types of commercial fruit vinegar are being manufactured and among them are apple cider, persimmon vinegar, banana vinegar, wine (grape) vinegar, balsamic (crush grape) vinegar and others. Recently our researches had shown some interest on the production of star fruit (*Averrhoa carambola*) juice vinegar, however, kinetic study on factors affecting the vinegar production in bioreactor using yeast and acetic bacteria is lacking. Fruit vinegar has wide health benefits and is widely used as a condiment, health drink and used in many cooking dishes. Many researchers (Prescott *et al.*, 1999; Wood ,1998; Neto *et al.*, 2001; Simoons, 2000) has describe in detail the production of vinegar in open batch system, however, not much work is being done on kinetic study of vinegar using bioreactor. It is critical in to evaluate factors such as pH, aeration, inoculums size, and temperature and substrate concentration affecting production of the vinegar. A research was conducted to find the aeration rate and inoculums size affecting production of ethanol and acetic acid in star fruit juice vinegar.