# CURRENT RESEARCH AND DEVELOPMENT IN BIOTECHNOLOGY ENGINEERING AT IIUM **VOLUME III** **Editors:** Md. Zahangir Alam Ahmed Tariq Jameel Azura Amid **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA ## CURRENT RESEARCH AND DEVELOPMENT IN BIOTECHNOLOGY ENGINEERING AT HUM (VOLUME III) Editors: Md. Zahangir Alam Ahmed Tariq Jameel Azura Amid Department of Biotechnology Engineering Faculty of Engineering International Islamic University Malaysia #### Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Md. Zahangir Alam, Ahmed Tariq Jameel & Azura Amid: Current Reasearch and Development in Biotechnology Engineering at IIUM Volume III ISBN: 978-967-418-144-4 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by : IIUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan #### **CONTENTS** | PREFACE | | i | |-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----| | CHAPTER 1 | OPTIMIZATION OF EXRACTION PROCESS PARAMETERS FOR ANTI-CANCER AGENT FROM Solanum lycopersicum | 1 | | | Azura Amid, Abdul Aziz Ahmad and Raha Ahmad Raus | | | CHAPTER 2 | OPTIMIZATION OF THE EXTRACTION PROCESS PARAMETER FOR KENAF SEEDS OIL TO OBTAIN HIGH OIL YIELD | 11 | | | Azura Amid, Parveen Jamal, Nurul Elyani Mohamad and<br>Engku Hasmah Engku Abdullah | | | CHAPTER 3 | OPTIMIZATION OF THE EXTRACTION PROCESS PARAMETER TO OBTAIN HIGHEST ANTI-CANCER ACTIVITY FROM KENAF SEEDS | 17 | | | Azura Amid, Parveen Jamal, Nurul Elyani Mohamad and<br>Engku Hasmah Engku Abdullah | | | CHAPTER 4 | OPTIMIZATION OF HEAT STERILIZATION ON MANGO FRUIT ( <i>Mangifera indica</i> ) PUREE AND EFFECTS TOWARDS CANCER TREATMENT | 25 | | | Azura Amid, Irwandi Jaswir and Muhd. Ezza Faiez Othman | | | CHAPTER 5 | DETERMINATION OF OPTIMAL RANGE OF POST-INDUCTION TEMPERATURE FOR PRODUCTION OF SOLUBLE RECOMBINANT BROMELAIN IN <i>Escherichia coli</i> USING ONE-FACTOR-AT-A-TIME (OFAT) APPROACH | 33 | | | Azura Amid and Jamil Jamaluddin | | | CHAPTER 6 | AEROBIC BIODEGRADATION OF OIL AND GREASE IN PALM OIL MILL EFFLUENT USING CONSORTIUM OF MICROORGANISMS | 43 | | | Ahmad Tariq Jameel and Alade Abass Olanrewaju | | | CHAPTER 7 | WASTEWATER TREATMENT BY IMMOBILISED CELL SYSTEMS | 53 | | | Ahmad Tariq Jameel and Alade Abass Olanrewaju | | | CHAPTER 8 | BATCH FERMENTATION OF RECOMBINANT<br>Escherichia coli PRODUCING $\beta$ -GLUCURONIDASE<br>USING DIFFERENT CONTROL CONDITION | 61 | | | Mohd Ismail Abdul Karim, Hamzah Mohd Salleh and<br>Maizirwan Mel | | | CHAPTER 9 | OPTIMIZATION OF PROCESS CONDITION FOR E. coli | 73 | | | FERMENTATION PRODUCING NUCLEOCAPSID | | | | PROTEIN-AVIAN INFLUENZA VIRUS (NP-AIV) | | | | Maizirwan Mel, Md Rashid Shamsuddin, Hamadah Mohd Nur | | | | Lubis, Syarifah Syed Hasan and Suriani Mohd Noor | | | CHAPTER 10 | CELL DISRUPTION IMPROVEMENT OF E. coli<br>PRODUCING NP-AIV USING HIGH PRESSURE<br>HOMOGENIZER | 79 | |------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | | Maizirwan Mel, Mohd Rashid Shamsuddin, Hamadah Mohd<br>Nur Lubis, Sharifah Syed Hasan and Suriani Mohd Noor | | | CHAPTER 11 | SEEDS' OIL AS BIOLUBRICANT Mohamed E. S. Mirghani, I. A. Ahmed, N. A. Kabbashi, S. A. Muyibi, J. I. Daoud and M. A. Mikail | 85 | | CHAPTER 12 | SPECIAL OIL FROM DATE PALM KERNEL Mohamed Elwathig Saeed Mirghani, Nasereldin A. Kabbashi and Nur Ellyana Mohd Noor | 93 | | CHAPTER 13 | GUM ARABIC: A NARRATIVE EMULSIFYING AGENT<br>Mohamed Elwathig Saeed Mirghani, Maizirwan Mel and<br>Fatimah Misran | 105 | | CHAPTER 14 | INVESTIGATIONS ON SPIDER HOUSE FOR ANTI<br>MICROBIAL ACTIVITY<br>Mohamed Elwathig Saeed Mirghani and Mohamad Zul<br>Fahmi Zulkifli | 117 | | CHAPTER 15 | EVALUATION ON QUALITY OF HEAT RESISTANCE<br>CHOCOLATE<br>Mohamed Elwathig Saeed Mirghani and Maan Fahmi Al-<br>Khatib | 129 | | CHAPTER 16 | ANTIMICROBIAL PROPERTY OF DATE SEED EXTRACT Mohamed E. S. Mirghani, M. A. Mikail, I. A. Ahmed, M. I. Abdul Karim and J. I. Daoud | 139 | | CHAPTER 17 | PROCESS IMPROVEMENT OF CONVENTIONAL PALM<br>OIL MILLING: CONTINUOUS COOKER<br>Azlin Azmi, Mageswari Somasundaram and Dzun Jimat | 146 | | CHAPTER 18 | FOWL CHOLERA VACCINE PRODUCTION:<br>SCREENING AND OPTIMIZATION OF MEDIA IN<br>SHAKE FLASK CULTURE<br>Maizirwan Mel, Mohd Ismail Abdul Karim, Nor Jannah Yob,<br>Intan Zahrah Samsury, Sharifah Syed Hassan and Akma<br>Ngah Hamid | 155 | | CHAPTER 19 | FOWL CHOLERA VACCINE PRODUCTION: PROCESS OPTIMIZATION IN LABORATORY SCALE FERMENTER Maizirwan Mel, Mohd Ismail Abdul Karim, Nor Jannah Yob, Intan Zahrah Samsury, Sharifah Syed Hassan and Akma Ngah | 163 | | CHAPTER 20 | PROCESS IMPROVEMENT OF CONVENTIONAL PALM OIL MILLING: DEPULPER Azlin Azmi, Mageswari Somasundaram and Dzun Jimat | 169 | |------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | CHAPTER 21 | DIFFUSION-REACTION OF NUTRIENT IN IMMOBILIZED SLAB BIOCATALYST FOR FIRST AND ZERO ORDER REACTIONS Ahmad Tariq Jameel and RM Syibli Milasi | 175 | | CHAPTER 22 | DIFFUSION-REACTION OF SUBSTRATE IN CYLINDRICAL IMMOBILIZED BIO-CATALYST | 183 | | CHAPTER 23 | Ahmad Tariq Jameel and RM Syibli Milasi DIFFUSION-REACTION OF SUBSTRATE IN IMMOBILIZED SLAB BIOCATALYST FOR MICHAELIS- MENTEN KINETICS | 189 | | CHAPTER 24 | Ahmad Tariq Jameel and RM Syibli Milasi FERMENTATION OF BIOETHANOL FROM SAGO STARCH | 197 | | CHAPTER 25 | Mohamed Ismail Abdul Karim and Husna Muhammad Nadzri<br>KINETIC STUDY ON VINEGAR PRODUCTION USING<br>STAR FRUIT JUICE<br>Mohamed Ismail Abdul Karim and Noor Izzaida Kamaruddin | 203 | | CHAPTER 26 | FERMENTATION OF VINEGAR FROM STAR FRUIT (Averrhoa carambola) Mohamed Ismail Abdul Karim, Farah Izora Jasni and | 207 | | CHAPTER 27 | Parveen Jamal DESIGN AND DEVELOPMENT OF A LAB SCALE BIOREACTOR FOR HEAT INDUCIBLE ENZYME EXPRESSION SYSTEM | 211 | | | Daud Adam, Ahmad Faris Ismail and Hamzah Mohd. Salleh | | | CHAPTER 28 | OPTIMIZATION OF PHYTOCHEMICAL ANTIOXIDANTS IN RBD PALM OLEIN DURING FRYING PROCESS Irwandi Jaswir and Mohd Syakirin Sudin | 219 | | CHAPTER 29 | OPTIMIZATION OF PROCESS PARAMETERS FOR EXTRACTION OF XANTHINE OXIDASE INHIBITOR (XOI) FROM Lycopersicon esculentum Parveen Jamal, Azura Amid, Rasidi Bahardin and Saiful Mohammad Nizam Azmi | 226 | | CHAPTER 30 | PROCESS OPTIMIZATION OF HYDROCOLLOID PRODUCTION FROM SEAWEEDS | 237 | | | Irwandi Jaswir, Mohd Razi Kodin and Parveen Jamal | | | CHAPTER 31 | IMPROVEMENT OF CONVENTIONAL MILLING<br>PROCESS IN PALM OIL PROCESSING: ROTARY<br>FILTER PRESS | 245 | | | Azlin Azmi, Koshela Vengadachalam and Dzun Jimat | | |------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | CHAPTER 32 | SCREENING OF FUNGI ON SOLID STATE<br>BIOCONVERSION OF OIL PALM EMPTY FRUIT<br>BUNCH FOR PRODUCTION OF CELLULASE | 251 | | | Mohamed Ismail Abdul Karim, Manisya Zauri A. Hamid,<br>Faridah Yusof and Md Zahangir Alam | | | CHAPTER 33 | SINGLE STAGE STIRRED TANK BIOREACTOR<br>PRODUCTION OF STAR FRUIT (Averrhoa carambola)<br>VINEGAR | 259 | | | Mohamed Ismail Abdul Karim, Parveen Jamal and Mohd<br>Nasir Jamaluddin Ab Rahaman | | | CHAPTER 34 | TREATMENT OF PALM OIL MILL EFFLUENT USING MICROORGANISMS | 269 | | | Mohamed Ismail Abdul Karim, Nurul Aima Daud and Md<br>Zahangir Alam | | | CHAPTER 35 | COMPARATIVE STUDY OF BIOREACTORS USED FOR PALM OIL MILL EFFLUENT TREATMENT BASED ON CHEMICAL OXYGEN REMOVAL EFFICIENCIES Ahmad T. Jameel, Suleyman A. Muyibi and Alade A. Olanrewaju | 277 | | CHAPTER 36 | EFFECT OF HOMOGENIZATION IN BREAKING | 285 | PROTEIN-CAROTENOID COMPLEXES FOR Parveen Jamal, Irwandi Jaswir, Nurhasri Mulyadi Hashim THE USE OF MODIFIED POLYMERIC POLYHIPE AS 297 306 RELEASING ACTIVE COMPOUNDS and Saiful Mohammad Nizam Azmi Dzun Jimat and Azlin Azmi AN IMMOBILIZED CELL MATRIX CHAPTER 37 INDEX #### **CHAPTER 21** ### DIFFUSION-REACTION OF NUTRIENT IN IMMOBILIZED SLAB BIOCATALYST FOR FIRST AND ZERO ORDER REACTIONS Ahmad Tariq Jameel and RM Syibli Milasi Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia #### **ABSTRACT** The effect of nutrient diffusion on the overall reaction rate inside porous slab biocatalyst containing an immobilized enzyme or cells has been investigated theoretically. Zero-order and first-order kinetics were studied. The problem is represented in mathematical model developed using shell mass balance on the thin slab of biocatalyst. The second order differential equations developed for zero and first order kinetics are solved analytically to find the concentration profile inside the slab biocatalyst. The concentration profile is obtained as a function of Thiele modulus which in turn was used to evaluate effectiveness factor. From the analysis, high diffusion rate of substrate into the porous area increased the concentration profiles and effectiveness factor. *Keywords*: immobilized biocatalyst, effectiveness factor, Thiele modulus, approximate solution, slab geometry. #### INTRODUCTION Reaction involving solid (e.g., immobilized enzyme/cell) and liquid (substrate) phases is important in bio-processing. Immobilized biocatalyst is a solid support that trapped cells or enzymes in a porous and relatively soft gel allowing diffusion of reactants and products to and from the interior of the particle. For the purpose of using this biocatalyst effectively, kinetics behaviour of immobilized enzyme or cell is studied which provides a better insight into the function of certain biological membrane (Bischoff, 1965). The use of immobilized biocatalyst pellets offers several advantages over free enzymes/cells such as long-term continuous operation and significant yield enhancement due to the repeated use of the biocatalyst (Doran, 1995). Generally in biological reactions there is no large temperature gradient thus the rate of reaction depends on the mass transfer outside or within the solid catalyst due to the concentration difference of the substrate. If the pore size is small, convection can be neglected and thus only diffusion is taken into consideration. This assumption helps in simplifying the overall model equation (Doran, 1995). Slab geometry is chosen because it can be used with reasonable accuracy to approximate a sphere in the limit of very small thickness of the immobilized layer of enzymes/cells relative to the large radius of sphere. There are 3 general reaction kinetics in biological reactions; zero-order, first-order and Michaelis-Menten. Here