

Maizirwan Mel Hamzah Mohd Salleh Mohd Azmir Arifin

BIOPROCESSING OF RECOMBINANT E.COLI PRODUCING β -GLUCURONIDASE ENZYME

IIUM Press
INTIERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Bioprocessing Of Recombinant $E.\ coli$ Producing β -Glucuronidase Enzyme

Edited By

Maizirwan Mel Hamzah Mohd Salleh Mohd Azmir Arifin

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 © HUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrival system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the publisher.

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data

Bioprocessing Of Recombinant E.Coli Producing β - Glucuronidase Enzyme Maizirwan Mel Include Index

ISBN 978-967-418-010-2

Member of Majlis Penerbitan Ilmiah Malaysia - MAPIM (Malaysian Scholarly Publishing Council)

Printed by:
IIUM PRINTING SDN. BHD.
No. 1, Jalan Industri Batu Caves 1/3,
Taman Perindustrian Batu Caves,
Batu Caves Centre Point,
68100 Batu Caves.
Selangor Darul Ehsan

Contents

		vi ix
		1
	Maizirwan Mel, Hamzah Mohd Salleh, Mohd Ismail Abdul Karim and Herry Hidayat Jamil	
2	Improvement of Recombinant <i>E. coli</i> Fermentation Producing β -glucuronidase Enzyme by Taguchi's Design	21
	Maizirwan Mel, Hamzah Mohd Salleh, Mohd Ismail Abdul Karim and Mior Haslem Mior Rashidi	
3	Batch Fermentation of Recombinant Escherichia coli Producing β -glucuronidase using Different Control Conditions	37
	Mohd Ismail Abdul Karim, Hamzah Mohd Salleh and Maizirwan Mel	
4	Control Strategy of Fed-Batch Fermentation of $\emph{E. coli}$ Producing Recombinant β -glucuronidase	49
	Maizirwan Mel, Mohd Ismail Abdul Karim, Azini Mat Sa`ud and Hamzah Mohd Salleh	
5	The kLa Evaluation of Recombinant Escherichia coli Fermentation Producing β -glucuronidase Enzyme	63
	Maizirwan Mel, Mohd Ismail Abdul Karim and Hamzah Mohd Salleh	

Cell Disruption of Recombinant E. coliProducing β -Glucuronidase by High Pressure Homogenizer

Maizirwan Mel, Hamzah Mohd Salleh, Mohd Ismail Abdul Karim and Mohd Syazwan Osman

1. Introduction

 β -glucuronidase, the enzyme responsible for the degradation of various polysaccharides or the cleavage of glucurono-conjugates, is widely distributed in animal, plants, insects and bacteria, with particularly high concentrations in liver found in animals. β -glucuronidase plays an important role in the enterohepatic circulation of drugs and the hydrolysis by b-glucuronidase can contribute significantly to the overall biological activity or toxicity of a xenobiotic in mammals (Sallch et al., 2006).

Homogenization of solution containing cells using high pressure homogenizer (HPH) is a widespread technique for extrication intracellular products from the cells. This mechanical mode of cell disruption is currently being the general method of choice for the large-scale disruption of microorganism especially for recombinant *E. coli* (Goldberg, 19972). Homogenization technology is based on the use of pressure on liquids to subdivide particles or droplets present in fluids into the very smallest sizes and create a stable dispersion ideal for further processing. Homogenization features a high concentration