CURRENT RESEARCH AND
DEVELOPMENT IN
BIOTECHNOLOGY ENGINEERING
AT IIUM

(VOLUME I)

Editors:
Suleyman Aremu Muyibi
Mohammed Saedi Jami
Zaki Zainudin

Department of Biotechnology Engineering
Faculty of Engineering
International Islamic University Malaysia

IIUM PRESS
CONTENTS

PREFACE

CHAPTER 1 SELECTION OF POTENTIAL FUNGAL STRAINS FOR THE PRODUCTION OF GLUCOAMYLASE USING NON-FOOD CASSAVA
Md. Zahangir Alam, Hamzah Mohd Salleh, Juwairiyah Abd Karim, and Aiyu Salini

CHAPTER 2 WATER QUALITY MODELING TO ASSESS THE IMPACTS OF PALM OIL MILL EFFLUENT (POME) IN SG. KALUMPANG BASIN
Zaki Zainudin

CHAPTER 3 WATER QUALITY CHARACTERIZATION STUDIES ON SPRING WATER FOR USE IN PONDS FOR KELAH FISH BREEDING IN KELAH SANCTUARY
Suleyman Aremu Mayibi, Sin Hatyah Binti Mortan, and Mohamed Ismail Abd Karim

CHAPTER 4 THE SOLID WASTE MANAGEMENT SYSTEM ISSUES ON POLLUTION AND WASTE DISPOSAL PROBLEMS
Nasserelddeen Kabbashi, Najla Shuhud, and Mohammed Saedi Jam

CHAPTER 5 SETTLING COLUMN ANALYSIS FOR WATER TURBIDITY REMOVAL USING CHITOSAN
Nasserelddeen Ahmed Kabbashi and Muhammad Fazil B Anasar

CHAPTER 6 PROCESS DEVELOPMENT OF REMOVING LOW TURBIDITY WATER USING CHITOSAN AS A BIOCOAGULANT
Nasserelddeen Ahmed Kabbashi and Muhammad Fazil B Anasar

CHAPTER 7 OPTIMIZATION OF PROCESS CONDITIONS FOR GLUCOAMYLASE PRODUCTION USING NON-FOOD CASSAVA
Md. Zahangir Alam, Hamzah Mohd Salleh, Radhiah Artiffin, and Noor Mohammad

CHAPTER 8 DEVELOPMENT OF RAPID ENZYMATIC PROCESS FOR ACID OIL PRODUCTION FROM SLUDGE PALM OIL
Md. Zahangir Alam, Hamzah Mohd Salleh, and Noram Mood Yusof

CHAPTER 9 OPTIMISATION OF CHROMATOGRAPHY CONDITION FOR BIOPHENOLS SEPARATION FROM OIL PALM FRUIT FIBER
Parveen Jamal, Shahrul Yahaya, Md. Zahangir Alam, and Azlin Azmi

CHAPTER 10 MORINGA SEED OIL EXTRACTION AND CAKE PROCESSING FROM BENCH TO COMMERCIAL PRODUCTION OF ALTERNATIVE WATER TREATMENT CHEMICALS FOR DEVELOPING COUNTRIES
Suleyman A. Mayibi and Idris M. Bugaje

CHAPTER 11 INVESTIGATION OF ANTIMICROBIAL ACTIVITY OF MORINGA OLEIFERA SEEDS FOR APPLICATION IN WATER TREATMENT
Suleyman A. Mayibi and Farhana Aina Bt Ahmad Nazir

CHAPTER 12 SCREENING OF LIGNOCELLULOSIC MATERIALS FOR THE PRODUCTION OF FERMENTABLE SUGAR
Md. Zahangir Alam, Abdullah-Al-Mamun, Hikmah Mohd Noor, and Noor Mohammad

CHAPTER 13 LOCAL SOURCING FOR RENEWABLE AND SUSTAINABLE REPLACEMENT FOR WATER AND WASTEWATER TREATMENT CHEMICALS: ACTIVATED CARBON FROM AGRO-WASTES
Suleyman Aremu Mayibi, Mohd Ismail Abdulkarim, Md. Zahangir Alam, Enad S M Ameen, and Nasserelddeen A. Kabbashi

CHAPTER 14 EVALUATION OF THE PERFORMANCE OF WATER TREATMENT SYSTEM FOR KELAH BREEDING IN FISH PONDS
Suleyman Aremu Mayibi, Siti Sara Binti Ghazali, and Mohamed Ismail Abd Karim
CHAPTER 15  DESIGN OF TERTIARY TREATMENT SYSTEM FOR EFFLUENT FROM STP AT IIUM FOR HORTICULTURAL USES  91
Suleyman A. Mayibi and Tanvin Tagari

CHAPTER 16  COMPARATIVE STUDIES OF MORINGA OLEIFERA AND ALUMINIUM SULPHATE AS COAGULANTS IN TURBIDITY REMOVAL FROM SURFACE WATER  96
Suleyman A. Mayibi, Eman N. Alt, Md. Zahangir Alam, and Hamzah M. Salleh

CHAPTER 17  AN EXPERT SYSTEM FOR DESIGN OF WATER TREATMENT PLANT  101
Nasserelddeen Kabhashi, Amwar Bin Mohammad, and Suleyman A. Mayibi

CHAPTER 18  ISOLATION AND SCREENING OF POTENTIAL MICROORGANISM FOR BIOREMEDIATION OF HYDROCARBON CONTAMINATED SITES  106
Parveen Jamal, Md. Zahangir Alam, and Nur Aneem Fadza

CHAPTER 19  SLUDGE PALM OIL AS A POTENTIAL SOURCE FOR EMULSIFIER PRODUCING STRAIN  113
Parveen Jamal, Md. Zahangir Alam, and Nur Fathiah Abd. Sana

CHAPTER 20  MICROBIAL FERMENTATION FOR PRODUCING SURFACE ACTIVE AGENT BY USING PALM OIL MILL EFFLUENT ISOLATE  119

CHAPTER 21  A BATCH PROCESS PRODUCTION OF COMPOST AND KINETICS ORDER OF REACTION STUDY BY ISOLATED FUNGAL STRAINS  126
Nasserelddeen A. Kabhashi, Optakun Suray, and Md. Zahangir Alam

CHAPTER 22  ANALYSIS OF ELECTROFOREDERATED SEDIMENTATION OF ZINC OXIDE  137
Mohammed S. Jamil, Masashi Iwata, Ma an Alkhatab, and Mujei Mustapha

CHAPTER 23  PRODUCTION OF BIODIESEL BY ACID-BASE CATALYZED TRANSESTERIFICATION OF WASTE COOKING OIL IN A BATCH REACTOR  143
Md. Zahangir Alam, Parveen Jamal and Nor Rashid Bin Mohamad

CHAPTER 24  FRACTIONATION, IDENTIFICATION AND QUANTIFICATION OF BIOPHENOLS FROM OIL PALM FRUIT FIBER  150
Parveen Jamal, Shahrul Yahaya, Md. Zahangir Alam, and Azlin Azmi

CHAPTER 25  CELLULASE PRODUCTION FROM RICE STRAW AND CORN COB BY SOLID STATE BIOCONVERSION  158
Md. Zahangir Alam, Mazlinor Mohd Awas, and Aliyu Salihu

CHAPTER 26  NATURAL DISINFECTANTS FOR WATER TREATMENT  164
Mohamed E. S. Mirghani, I A Ahmed, S A Mayibi, J I Daoud and M A Mkhail

CHAPTER 27  REMOVAL OF WATER TURBIDITY BY USING FABA BEANS  173
Mohamed E. S. Mirghani, Nassereldin A. Kabhashi, and Faseelah Abdul Kadir

CHAPTER 28  WASTE TO WEALTH: DATE SEED PITS  180
Mohamed E. S. Mirghani, M A Mkhail, I A. Ahmed, M I Abdul Karim and J I Daoud

CHAPTER 29  EFFECT OF HYDROGEN PEROXIDE ON SETTLEABITY AND FILTERABILITY OF SLUDGE FROM DRINKING WATER TREATMENT PLANT  188
Mohammed Saedi Jamli, Suleyman Aremu Mayibi, and Mohd Shahril Bin Kamaruddin

CHAPTER 30  ENHANCING THE DEWATERABILITY OF SLUDGE FROM WASTEWATER TREATMENT PLANT  194
Mohammed Saedi Jamli, Suleyman Aremu Mayibi, and Nur Sallyah Embong

CHAPTER 31  EVALUATION OF AMMONIA NITROGEN REMOVAL IN AN EXISTING SEQUENTIAL BATCH REACTOR  200
Mohammed Saedi Jamli, Suleyman Aremu Mayibi, and Nur Fazah Bt Ismail

CHAPTER 32  PRODUCTION OF GLUCOAMYLASE FROM RICE BRAN USING  206
POTENTIAL FUNGAL STRAINS
Md Zahangir Alam, Hamzah Mohd Salleh, and Nurhidayah Binti Ahmad Hassan

CHAPTER 33
OPTIMIZATION OF PROCESS CONDITIONS FOR GLUCOAMYLASE PRODUCTION USING RICE BRAN
Md. Zahangir Alam, Hamzah Mohd Salleh, and Siti Najilaa Othman

CHAPTER 34
MEMBRANE PROCESS FOR REUSE OF TREATED PALM OIL MILL EFFLUENT (POME)
Mohammed Saedi Jami, Suleyman Aremu Mayibi, Siti Noor Hayati Abdul Kudus, and Mumirat Idris Oseni

CHAPTER 35
PRODUCTION OF FERMENTABLE SUGAR FROM LIGNOCELLULOSIC MATERIALS USING STATISTICAL DESIGN
Md. Zahangir Alam, Abdullah-Al-Manun, and Hikmah Mohd Noor

CHAPTER 36
STUDY OF THE DEWATERABILITY OF KAOLINE AS A MODEL SUBSTANCE FOR SLUDGE
Mohammed Saedi Jami, Tariq Jameel, Mardhiah Farhanah Bi Noor Izan, and Jabir Hussain

INDEX

237
CHAPTER 12

SCREENING OF LIGNOCELLULOSIC MATERIALS FOR THE PRODUCTION OF FERMENTABLE SUGAR

Md. Zahangir Alam, Abdullah-Al-Mamun, Hikmah Mohd Noor, Noor Mohammad

Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, Malaysia

ABSTRACT

A laboratory scale production of fermentable sugar using enzymatic hydrolysis was carried out. Three parameters affecting the production of fermentable sugar (optimum time, substrate, and enzyme concentration) were evaluated. Among the substrates, rice husk gave the highest yield of fermentable sugar compared to empty fruit bunches (EFB) and waste paper. In case of optimum time and enzyme concentration, 2 hrs and cellulase produced by Phanerochaete chrysosporium were found to be appropriate for the highest yield of sugar by rice husk.

Keywords: fermentable sugar, enzymatic hydrolysis, rice husk, phanerochaete chrysosporium

INTRODUCTION

Lignocelluloses are generally considered as the best substrates for the solid-state fermentation process. They hold tremendous potential for the production of enzymes. Agricultural residues contain lignocelluloses as the major component. The lignin, which occupies around 30% of the total composition of lignocellulosic residues, forms the barrier for the microorganisms to utilize cellulose as carbohydrate for their growth. Therefore various physicochemical treatments were conducted on lignocellulosic agricultural waste (Kodali and Ravendra, 2006).

A fermentable sugar from biomass refers to glucose and xylose which can be converted to ethanol (Ladicsh and Svarczkopf, 1991). Lignocellulosic materials contain both cellulose and lignin. Sources of lignocellulosic materials include wood, empty fruit bunches from palm oil industry, agricultural residues, water treatment plantsludge, grasses and other related substances. Lignocellulosic biomass is the most abundant renewable resources on earth (Bellamy, 1974; Ladicsh and Svarczkopf, 1991) and has attracted continuing efforts to be utilized in the production of biofuels and biochemical for a long time (Lynd et al., 1999; Sherrard and Kressman, 1945; Sudha et al., 1998; Ladicsh and Svarczkopf, 1991).

In the production of fermentable sugar, hydrolysis by acids and enzymes are the two methods that have been commonly used. (Sun and Cheng, 2002; Galbe and Zacchi, 2002). Thus, enzymatic hydrolysis has a number of advantages over the acid hydrolysis such as high yield of pure glucose, low environmental impact, and mild reaction conditions.