Zuraida Ahmad # SAGO (Metroxylon Rottb) And Its Applications 20um ## Sago (*Metroxylan Rottb*) and Its Applications Editor Zuraida Ahmad ### Published by HUM Piess International Islamic University Malaysia First Edition, 2011 © HUM Press, HUM All rights reserved. No part of this publication may be reproduced, stored in a retrival system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the publisher Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Zuraida Ahmad Sago (*Metrovylon Rottb*), and Its Applications Zurarda Ahmad Include Index ISBN 978-967-418-163-5 ISBN 978-967-418-163-5 Member of Majlis Penerbitan Ilmiah Malaysia - MAPIM (Malaysian Scholarly Publishing Council) Printed by HUM PRINTING SDN BHD No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan Tel. +603-6188 1542 / 44 / 45 Fax. +603-6188 1543 EMAIL humpinting@yahoo.com ## **Contents** | Preface | vi | |---|----| | Chapter 1 Sago, Its Properties and Applications: A Review | 1 | | Nurizan Omar, Nur Humairah,
Maziati Akmal and Zuraida Ahmad | | | Chapter 2 | 17 | | Comparative Study between Sytandard and | | | Commercial Sago Starch
Norhuda Hidayah Nordin, Zuraida Ahmad,
Nurizan Omar and Tuti Yasmin Alias | | | Chapter 3 | 27 | | Albumen-Thermoplastic Sago Starch Reinforced Cotton: | | | Agro-Green Composites | | | Yusliza Yusof and Zahurin Halim | | | Chapter 4 | 41 | | Bioethanol Production from Sago | | | Maizirwan Mel, Husna Muhammad Nadzri, | | | Mohd Hider Kamarudin and Mohd Ismail Abd Karim | | | Chapter 5 | 59 | | Optimizing Bioethanol Production from | | | Sago Starch in Bioreactor for Renewable Energy | | | Mohd Hider Kamarudin, Maizirwan Mel | | | and Mohd Ismail Abdul Karim | | | Chapter 6 | 71 | | The Effect of Saccharification Process | | | of Sago Starch into Sugars | | | Maizirwan Mel, Husna Muhammad Nadzri, | | | Mohd Hider Kamarudin and Mohd Ismail Abd Karim | | | Chapter 7 | 79 | |--|-----| | Feedstock Preparation of Injection Moulded | | | Stainless Steel Using Biodegradable Starch Binder | | | Mohd Afian Omar, Istikamah Subuki, | | | Nor Syakıra Abdullah and Tutı Yasmın Alıas | | | Chapter 8 | 87 | | Sago Starch-Nanoclay Biocomposites Film | | | Nurızan Omar, Norazah Ishak and Zuraıda Ahmad | | | Chapter 9 | 101 | | Preparation and Characterization | | | of Glycerol Plasticized Sago Starch-Kenaf | | | Core Fibers Biocomposites | | | Norshahıda Sarıfuddın, Hanafı İsmaıl and Zuraıda Ahmad | | | Chapter 10 | 115 | | Preliminary Study on Superabsorbent | | | Polymer Hydrogel from Sago Starch | | | Nurızan Omar, Norhuda Hıdayah Nordın and Zahurın Halım | | | Index | 125 | #### Feedstock Preparation of Injection Moulded Stainlesss Steel Using Biodegradable Starch Binder Mohd Afian Omar¹, Istikamah Subuki², Nor Syakira Abdullah³, and Tuti Yasmin Alias⁴ 1,2,3. AMREC, SIRIM Bhd, Jalan Hi Tech 2/3, Kulim Hi Tech Park, 09000 Kulim, Kedah 4. Faculty of Engineering, International Islamic Malaysia afian@sirim.my Keywords: feedstock, stainless steel, injection moulded, starch Preview. A water atomised 316L stainless steel powder has been evaluated in the context of the metal injection moulding (MIM) process using a locally based binder system; biodegradable starch. The data obtained on powder characteristics and feedstock preparation essentially conform to the standard requirement of MIM processing. Injection moulding was successful conducted using a powder loading of 0.62. Binder debinding was performed using solvent extraction and thermal method. Results show that water atomised powder could be sintered to a maximum of 95% of theoretical density at the sintering temperature of 1360°C for 1 hour. Specimen composed of water atomised powder exhibit large shrinkage owing to the lower green density associated with poor packing property of the powder. #### Introduction It has been established that gas atomised SS powder are suitable for MIM processing due to their high packing density and associated feedstock rheology [1-4]. But the cost and low interparticle friction (which affect component shape retention) are disadvantages of gas atomised powder. In contrast, German (1990) reported that the water atomised powder has a lower cost and non-spherical particle shape,