Zuraida Ahmad

SAGO (Metroxylon Rottb)

And Its Applications

20um

Sago (*Metroxylan Rottb*) and Its Applications

Editor Zuraida Ahmad

Published by HUM Piess International Islamic University Malaysia

First Edition, 2011 © HUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrival system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the publisher

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data

Zuraida Ahmad

Sago (*Metrovylon Rottb*), and Its Applications Zurarda Ahmad Include Index ISBN 978-967-418-163-5

ISBN 978-967-418-163-5

Member of Majlis Penerbitan Ilmiah Malaysia - MAPIM (Malaysian Scholarly Publishing Council)

Printed by
HUM PRINTING SDN BHD
No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan
Tel. +603-6188 1542 / 44 / 45 Fax. +603-6188 1543
EMAIL humpinting@yahoo.com

Contents

Preface	vi
Chapter 1 Sago, Its Properties and Applications: A Review	1
Nurizan Omar, Nur Humairah, Maziati Akmal and Zuraida Ahmad	
Chapter 2	17
Comparative Study between Sytandard and	
Commercial Sago Starch Norhuda Hidayah Nordin, Zuraida Ahmad, Nurizan Omar and Tuti Yasmin Alias	
Chapter 3	27
Albumen-Thermoplastic Sago Starch Reinforced Cotton:	
Agro-Green Composites	
Yusliza Yusof and Zahurin Halim	
Chapter 4	41
Bioethanol Production from Sago	
Maizirwan Mel, Husna Muhammad Nadzri,	
Mohd Hider Kamarudin and Mohd Ismail Abd Karim	
Chapter 5	59
Optimizing Bioethanol Production from	
Sago Starch in Bioreactor for Renewable Energy	
Mohd Hider Kamarudin, Maizirwan Mel	
and Mohd Ismail Abdul Karim	
Chapter 6	71
The Effect of Saccharification Process	
of Sago Starch into Sugars	
Maizirwan Mel, Husna Muhammad Nadzri,	
Mohd Hider Kamarudin and Mohd Ismail Abd Karim	

Chapter 7	79
Feedstock Preparation of Injection Moulded	
Stainless Steel Using Biodegradable Starch Binder	
Mohd Afian Omar, Istikamah Subuki,	
Nor Syakıra Abdullah and Tutı Yasmın Alıas	
Chapter 8	87
Sago Starch-Nanoclay Biocomposites Film	
Nurızan Omar, Norazah Ishak and Zuraıda Ahmad	
Chapter 9	101
Preparation and Characterization	
of Glycerol Plasticized Sago Starch-Kenaf	
Core Fibers Biocomposites	
Norshahıda Sarıfuddın, Hanafı İsmaıl and Zuraıda Ahmad	
Chapter 10	115
Preliminary Study on Superabsorbent	
Polymer Hydrogel from Sago Starch	
Nurızan Omar, Norhuda Hıdayah Nordın and Zahurın Halım	
Index	125

Feedstock Preparation of Injection Moulded Stainlesss Steel Using Biodegradable Starch Binder

Mohd Afian Omar¹, Istikamah Subuki², Nor Syakira Abdullah³, and Tuti Yasmin Alias⁴
1,2,3. AMREC, SIRIM Bhd, Jalan Hi Tech 2/3, Kulim Hi Tech Park, 09000 Kulim, Kedah
4. Faculty of Engineering, International Islamic Malaysia afian@sirim.my

Keywords: feedstock, stainless steel, injection moulded, starch

Preview. A water atomised 316L stainless steel powder has been evaluated in the context of the metal injection moulding (MIM) process using a locally based binder system; biodegradable starch. The data obtained on powder characteristics and feedstock preparation essentially conform to the standard requirement of MIM processing. Injection moulding was successful conducted using a powder loading of 0.62. Binder debinding was performed using solvent extraction and thermal method. Results show that water atomised powder could be sintered to a maximum of 95% of theoretical density at the sintering temperature of 1360°C for 1 hour. Specimen composed of water atomised powder exhibit large shrinkage owing to the lower green density associated with poor packing property of the powder.

Introduction

It has been established that gas atomised SS powder are suitable for MIM processing due to their high packing density and associated feedstock rheology [1-4]. But the cost and low interparticle friction (which affect component shape retention) are disadvantages of gas atomised powder. In contrast, German (1990) reported that the water atomised powder has a lower cost and non-spherical particle shape,