SAGO (Metroxylon Rottb) And Its Applications
Sago
(Metroxylan Rottb)
and Its Applications

Editor
Zuraida Ahmad

IIUM Press
Published by
IIUM Press
International Islamic University Malaysia

© IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the publisher.

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data

Zuraida Ahmad
Sago (Metroxylon Rotth), and Its Applications
Zuraida Ahmad
Include Index

Member of Majlis Penerbitan Ilmuah Malaysia - MAPIM
(Malaysian Scholarly Publishing Council)

Printed by
IIUM PRINTING SDN BHD
No 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan
Tel +603-6188 1542 / 44 / 45 Fax +603-6188 1543
EMAIL iiumping@yahoo.com
Contents

Preface vi

Chapter 1
Sago, Its Properties and Applications: A Review
Nurizan Omar, Nur Humairah, Maziati Akmal and Zuraida Ahmad
1

Chapter 2
Comparative Study between Sytandard and Commercial Sago Starch
Norhuda Hidayah Nordin, Zuraida Ahmad, Nurizan Omar and Tuti Yasmin Alias
17

Chapter 3
Albumen-Thermoplastic Sago Starch Reinforced Cotton: Agro-Green Composites
Yusliza Yusof and Zahrurin Halim
27

Chapter 4
Bioethanol Production from Sago
Maizirwan Mel, Husna Muhammad Nadzri, Mohd Hider Kamarudin and Mohd Ismail Abd Karim
41

Chapter 5
Optimizing Bioethanol Production from Sago Starch in Bioreactor for Renewable Energy
Mohd Hider Kamarudin, Maizirwan Mel and Mohd Ismail Abdul Karim
59

Chapter 6
The Effect of Saccharification Process of Sago Starch into Sugars
Maizirwan Mel, Husna Muhammad Nadzri, Mohd Hider Kamarudin and Mohd Ismail Abd Karim
71
Chapter 7
Feedstock Preparation of Injection Moulded Stainless Steel Using Biodegradable Starch Binder
Mohd Afian Omar, Istikamoh Subuki, Nor Syakira Abdullah and Tuti Yasmin Alias

Chapter 8
Sago Starch–Nanoclay Biocomposites Film
Nurizan Omar, Norazah Ishak and Zuraida Ahmad

Chapter 9
Preparation and Characterization of Glycerol Plasticized Sago Starch-Kenaf Core Fibers Biocomposites
Norshahida Sarifuddin, Hanafi Ismail and Zuraida Ahmad

Chapter 10
Preliminary Study on Superabsorbent Polymer Hydrogel from Sago Starch
Nurizan Omar, Norhuda Hidayah Nordin and Zahurin Halim

Index
Chapter 1

Sago, its Properties and Applications: A Review

Nurizan Omar, Nur Humairah, Maziati Akmal and Zuraida Ahmad
Faculty of Engineering – International Islamic University Malaysia
zuraidaa@iium.edu.my

Keywords: Sago palm, sago starch, fermentation, biotechnology, biomedical, gelatinization, retrogradation, swelling

Preview. Even though there are deep concerns over the probable global food shortage in future years, scientists throughout the world still have the interest to explore the potential of less utilized crops to be used in high end environmentally friendly products. In this regard, mostly in Asia, sago palm is gaining much attention due to being an extremely sustainable plant with an ability to thrive in most soil conditions. The application of sago is not merely for food industries but scientifically innovated into biomedical and biotechnology production. Since sago is such a great importance to over a million populations, therefore this review focuses on the characteristic of sago palm and sago starch, their availability and the properties of the sago-starch as well as the invention of products from this versatile plant.

Introduction

Sago palm. Sago palm (*Metroxylon sagu*) is among the oldest tropical plants utilized by man for its stem starch [1]. In Malaysia, sago palm is categorized under one of the potential less utilized food palm including maize and sugar palm tree. “Sago” which originally Javanese means starch containing palm pith [2] and the pith is located