Advances
in
Aircraft Structures

Editor
Jaffar Syed Mohamed Ali
Erwin Sulaema

IIUM Press
CONTENTS

Preface i

Contents ii

Contributing Author iv

Aircraft Structural Design and Testing
1 Design of IIUM Aircraft Fuselage Using Composite Material (5160/20210) 1
2 Fabrication and Testing of IIUM Aircraft Fuselage Structure Made of Composite Laminate Material (5160/20223) 8
3 Design and Fabrication of Fuselage Model for Laboratory Purpose (5160/20225) 16
4 Simulation of Fuselage Model for Laboratory Purpose (5160/20228) 24
5 Propeller Blade Stress Analysis using CATIA (4625/20230) 30
6 Lateral Crushing of Composite Fuselages (4625/20232) 37
7 Corrosion Detection in Aircraft Structures by Ultrasonic Method (4980/20233) 45
8 Fatigue Damage Characterization of Aluminum Alloy Plates (4980/20235) 55

Composite Structures (5160/20237)
9 Determination of Mechanical Properties of Corrugated Hybrid Composite 63
10 Composite Failure Mechanism of Corrugated Hybrid Composite Subjected to Bending Loading (5160/20239) 70
11 Study of Energy Absorption of Foam-Filled Honeycomb Structure (5160/20241) 79
12 Experimental Study of Indentation on Composite Structure (5160/20245) 86
13 Simulation Study of Composite Structure Subjected to 3 Points Bending Load (5160/20246) 93
14 Experimental Study of the Strength of Sandwich Structure with Honeycomb Core (5160/20248) 101
15 Buckling of Composite Columns (4625/20249) 107
16 Buckling of Composite Perforated Plates (4625/20253) 117
17 Structural Analysis of an Active Beam (4625/20254) 125
18 Characterization of Composite Materials using Full Field Data (6377/20256) 131
Structural Instability

21 Buckling of Long Column (4625/20264) 150
22 Buckling of Thin Walled Sections (4625/20265) 158
23 Effect of Boundary Conditions on the Buckling Behavior of Perforated Plates (4625/20266) 167
24 Effect of Cutout Shape on the Critical Buckling Load of Perforated Plates. (4625/20267) 174
25 Experimental Determination of Critical Buckling Load for a Perforated Plate (4625/20268) 182
26 Accurate Geometric Stiffness Matrix Formulation of Beam Finite Element (4625/20269) 190

Structure Analytical Methods

27 The Constitutive Equation Gap Method (6377/20270) 198
28 The Equilibrium Gap Method (6377/20271) 202
29 The Reciprocity Gap Method (6377/20272) 206
30 The Virtual Fields Method (6377/20273) 210
31 Numerical Construction of Piecewise Virtual Fields (6377/20274) 215
32 Numerical Model of Noise Effect in Full Field Data (6377/20274) 221
33 Optimized Virtual Fields with Noise Minimization (6377/20276) 227
34 Axial Stiffness Matrix of Non-Uniform Bernoulli-Euler Bar Elements (6477/20279) 233
35 Finite Element Model Updating (6377/20277) 240
Chapter 13

Simulation Study of Composite Structure
Subjected to 3 Point Bending Load

Y. Aminanda, Nor Fazilah Abdullah, Noor Izzah Abdul Rahman

Abstract

Advanced vehicles use composite materials to improve their performance. Local composite structures, especially those made of carbon fibers, are more brittle than metal structures, and absorb less energy before being fully collapsed. Knowledge of the strength helps to exploit the potential of composite materials and produce vehicle designs that take the collisions into account. Due to high stiffness and strength, composite structures of different orientation are used increasingly not only in aerospace applications, but other area as well, like automotive and building construction.

In this chapter, the Finite element analysis (FEA) of 3 Bending Point is performed using the FE code SAMCEF. The FEA results are in good agreement with the experimental results.

Keywords: composite, carbon fiber, 3 points bending, indentation, glass fiber, FEA simulation.

1. Introduction

Typically, this chapter consists of proposing finite element analysis model and validating the model with test results. The experimental parts are three bending point using cylindrical and spherical indenters. The cylindrical bending test is done with two different sizes of indenters. These tests are concerns with the small

Advances In Aircraft Structures