CONTENTS

Editorial Notes... v
About the Editors.. vi
Contents... vii

1. A Brief Overview of Biomechatronics and Its Applications... 1
 Nur Izatulnisha A.Rashid, Jamaliah Kassim and Asan G. A. Muthalif

 Asan G. A. Muthalif, Dzairul Hafiz and Haris Shafiq

 Asan G.A. Muthalif, Dzairul Hafiz and Haris Shafiq

 Asan G.A. Muthalif, Dzairul Hafiz and Haris Shafiq

5. Smart System For Monitoring Electrical Power Usage at Homes... 25
 Kawthar A. Rahman, Asan G. A. Muthalif and Nurul F. Shua'ib

6. Vibration Based Predictive Maintenance: Common Rotating Machinery Faults and Their Signatures ... 30
 Siti F. Mansor, Asan G. A. Muthalif and Nurul 'I. Zaman

7. Modeling of Disc Rotor Induction Motor .. 38
8. Computer Communication for a Smart Card Based Ordering System Via Visual Basic .. 52
 Siti Fauziah Toha and Rosdiazli Ibrahim

9. Electronic Smart Ordering System: Graphical User Interface 59
 Siti Fauziah Toha and Rosdiazli Ibrahim

10. Intruder Avoidance System Via Short Message Service (SMS) 65
 Siti Fauziah Toha and Mohammad Zafran Haja Mohideen

11. Anti Skid Control System, A Tutorial ... 71
 M. J. E. Salami, R. Khan, A.M. Aibinu, Syahrul Syazanizam Bin Md Said and Mohd Sofian Bin Basrah

12. Intelligent Anti Skid Control System .. 75
 M. J. E. Salami, R. Khan, A.M. Aibinu, Syahrul Syazanizam Bin Md Said and Mohd Sofian Bin Basrah

13. Principles of FMCW Radar Signal Processing 91
 Wahju Sediono and Andrian Andaya Lestari

 Wahju Sediono

15. Determination of Target Speed from the FMCW Radar Data 107
 Wahju Sediono and Andrian Andaya Lestari

16. Intelligent Egg Incubator: Introduction .. 116
 Shahrul Na'im Sidek, Yasir Mohd Mustafah, Urwah Ismail, Nur Hasnaa Che Awang

17. Intelligent Egg Incubator: Mechanical Design 125

viii
Shahrul Na’im Sidek, Yasir Mohd Mustafah, Urwah Ismail, Nur Hasnaa Che Awang

18. Intelligent Egg Incubator: System Integration And Results .. 137
 Shahrul Na’im Sidek, Yasir Mohd Mustafah, Urwah Ismail, Nur Hasnaa Che Awang

19. Human Posture Recognition Classification And Recognition 157
 Kyaw Kyaw Htike, Othman O. Khalifa and and Lai Weng Kin

20. Human Posture Recognition Preprocessing Techniques ... 162
 Othman O. Khalifa, Kyaw Kyaw Htike, Lai Weng Kin and A. Albagoul

21. Path Detection Implementation Using Fuzzy Classifier ... 171
 Imran Moez Khan, Yusof Zaw Zaw, Othman O. Khalifa and Lai Weng Kin

22. Mechanical Design Of Unmanned Underwater Vehicle .. 180
 Md. Raisuddin Khan, M. Zuhdi and Masum Billah

23. Design And Development Of An Automated Café System ... 187
 Md. Raisuddin Khan, MAS Kamal and Masum Billah

 T.S. Gunawan, Othman O. Khalifa, A. A. Shafie and E. Ambikairajah

25. A Case For Cooperative Vision System ... 202
 A. A. Shafie and N. Samudin

26. Path Following Autonomous Vehicle Based On Vision System 208
 A. A. Shafie, E. A. Syukur and N. I. Sidek

27. Trajectory Planning Using Gps For Unmanned Aerial Vehicle With Microcontroller Based System ... 215
 A. A. Shafie, Md. Raisuddin Khan and M Shehzad Islam
28. Digital Hearing Aids Analysis And Implementation .. 224
 Othman O. Khalifa, Aisha H. Abdalla and Sheroz Khan

 Siti Fauziah Toha and Rosdiazi Ibrahim

30. Automatic Smart Card Purchasing System for Express Kiosk 240
 Siti Fauziah Toha and Rosdiazi Ibrahim

31. Finite Element Formulation of Piezoelectric Laminated Composite Plate 247
 Iskandar Al-Thani Mahmood and Md. Raisuddin Khan

32. A Review on Modeling And Shape Control Of Piezoelectric Laminated
 Composite Plate Using Finite Element Method 257
 Iskandar Al-Thani Mahmood and Md. Raisuddin Khan

33. Development of Auto Parking System & Auto Billing System Using Image
 Processing Technique (Part 1) ... 267
 M. M. Rashid

34. Development of Auto Parking System and Auto Billing System Using
 Image Processing Technique (Part 2) ... 274
 M. M. Rashid

 Processing Technique (Part 3) ... 281
 M. M. Rashid

36. Automatic Car Parking Management System for Large Parking Lot 289
 M. M. Rashid

 M. M. Rashid
CHAPTER 22

MECHANICAL DESIGN OF UNMANNED UNDERWATER VEHICLE

Md. Raisuddin Khana, M. Zuhdib and Masum Billahc

Department of Mechatronics Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Malaysia
araisuddin@iium.edu.my, bzuhdi@yahoo.com, cmasum.uiu@gmail.com

22.1 Introduction

The ocean is a major part of the earth and is one of the main reasons why man is able to exist on it. Statistics show that 1) the ocean covers two-thirds of the earth and 2) about 37% of the world population lives within 100 km of the ocean. Even though its importance is clear, the ocean is usually forgotten as attention is focused on only land and atmospheric issues. The full depths of the oceans and its abundant living and non-living creatures have not been fully explored.

To classify underwater robots, there are Autonomous Underwater Vehicles (AUV) and also Remotely Operated Vehicles (ROV) \cite{1}. The Unmanned Underwater Vehicle (UUV) comes under the AUV category. The applications of the UUV are in the fields of science such as seafloor mapping and investigating oceanographic events such as tsunami. The military has also been widely using the UUV for shallow water mine detecting and disposal besides spying \cite{2-3}. Other applications include inspections of underwater structures, underwater communication and fisheries.

The UUV can float because of the weight of the water that it displaces is equal to the weight of the UUV \cite{4-7}. This displacement of water creates an upward force called the buoyant force and acts opposite to gravity, which pulls the UUV down. To control the buoyancy, UUVs usually have ballast tanks that can be alternately filled with water or air. When it is on the surface, the tank is filled with air and the overall density of the UUV would less than its surrounding water \cite{8}. As the UUV dives in water, the tank is filled with water and the air in the tank is vented from the UUV until its overall density is greater than the surrounding water and the UUV begins to sink due to negative buoyancy \cite{9}. In addition, the UUV has movable sets of short wings called hydroplanes on its body that control the angle of the dive. The hydroplanes are angled so that the water moves over the stern which force the stern upward, causing the UUV to be angled downward.

22.2 Design of the Mechanical System of the UUV

The design of the Unmanned Underwater Vehicle is divided into three major components. Firstly, there’s the mechanical design which involves the theoretical calculation and the integration of sensors and actuators. Secondly, there the design of the decision algorithm which is based on the control system and navigation of the UUV. Lastly, there’s the design of the controller together with the electronic and electrical components. The