MECHATRONICS BOOK SERIES: SYSTEM DESIGN AND SIGNAL PROCESSING - VOLUME 2

Editors
Md. Raisuddin Khan
Md. Mozasser Rahman
Muhammad Mahbubur Rashid
Shahrul Na'im Sidek
CONTENTS

Editorial Notes ... v
About the Editors .. vi
Contents ... vii

1. A Brief Overview of Biomechatronics and Its Applications ... 1
 Nur Izatulnisha A. Rashid, Jamaliah Kassim and Asan G. A. Muthalif

 Asan G. A. Muthalif, Dzairul Hafiz and Haris Shafiq

 Asan G.A. Muthalif, Dzairul Hafiz and Haris Shafiq

 Asan G.A. Muthalif, Dzairul Hafiz and Haris Shafiq

5. Smart System For Monitoring Electrical Power Usage at Homes 25
 Kawthar A. Rahman, Asan G. A. Muthalif and Nurul F. Shua’ib

6. Vibration Based Predictive Maintenance: Common Rotating Machinery Faults and Their Signatures .. 30
 Siti F. Mansor, Asan G. A. Muthalif and Nurul ‘I. Zaman

7. Modeling of Disc Rotor Induction Motor .. 38
M. M. Rashid, S. Abubakar and R. Tamjis

8. Computer Communication for a Smart Card Based Ordering System Via Visual Basic .. 52
 Siti Fauziah Toha and Rosdiazli Ibrahim

9. Electronic Smart Ordering System: Graphical User Interface 59
 Siti Fauziah Toha and Rosdiazli Ibrahim

10. Intruder Avoidance System Via Short Message Service (SMS) 65
 Siti Fauziah Toha and Mohammad Zafran Haja Mohideen

11. Anti Skid Control System, A Tutorial ... 71
 M. J. E. Salami, R. Khan, A.M. Aibinu, Syahrul Syazanizam Bin Md Said and Mohd Sofian Bin Basrah

12. Intelligent Anti Skid Control System .. 75
 M. J. E. Salami, R. Khan, A.M. Aibinu, Syahrul Syazanizam Bin Md Said and Mohd Sofian Bin Basrah

13. Principles of FMCW Radar Signal Processing 91
 Wahju Sediono and Andrian Andaya Lestari

 Wahju Sediono

15. Determination of Target Speed from the FMCW Radar Data 107
 Wahju Sediono and Andrian Andaya Lestari

16. Intelligent Egg Incubator: Introduction ... 116
 Shahrul Na’im Sidek, Yasir Mohd Mustafah, Urwah Ismail, Nur Hasnaa Che Awang

17. Intelligent Egg Incubator: Mechanical Design 125
18. Intelligent Egg Incubator: System Integration And Results.................. 137

Shahrul Na'im Sidek, Yasir Mohd Mustafah, Urwah Ismail, Nur Hasnaa Che Awang

19. Human Posture Recognition Classification And Recognition.................. 157

Kyaw Kyaw Htike, Othman O. Khalifa and and Lai Weng Kin

20. Human Posture Recognition Preprocessing Techniques....................... 162

Othman O. Khalifa, Kyaw Kyaw Htike, Lai Weng Kin and A. Albagoul

21. Path Detection Implementation Using Fuzzy Classifier 171

Imran Moez Khan, Yusof Zaw Zaw, Othman O. Khalifa and Lai Weng Kin

22. Mechanical Design Of Unmanned Underwater Vehicle 180

Md. Raisuddin Khan, M. Zuhti and Masum Billah

23. Design And Development Of An Automated Café System 187

Md. Raisuddin Khan, MAS Kamal and Masum Billah

T.S. Gunawan, Othman O. Khalifa, A. A. Shafie and E. Ambikairajah

25. A Case For Cooperative Vision System.. 202

A. A. Shafie and N. Samudin

26. Path Following Autonomous Vehicle Based On Vision System................ 208

A. A. Shafie, E. A. Syukur and N. I. Sidek

27. Trajectory Planning Using Gps For Unmanned Aerial Vehicle With Microcontroller Based System.. 215

A. A. Shafie, Md. Raisuddin Khan and M Shehzad Islam
28. Digital Hearing Aids Analysis And Implementation..224
 Othman O. Khalifa, Aisha H. Abdalla and Sheroz Khan

 Siti Fauziah Toha and Rosdiazi Ibrahim

30. Automatic Smart Card Purchasing System for Express Kiosk......................240
 Siti Fauziah Toha and Rosdiazi Ibrahim

31. Finite Element Formulation of Piezoelectric Laminated Composite Plate....247
 Iskandar Al-Thani Mahmood and Md. Raisuddin Khan

32. A Review on Modeling And Shape Control Of Piezoelectric Laminated
 Composite Plate Using Finite Element Method..257
 Iskandar Al-Thani Mahmood and Md. Raisuddin Khan

33. Development of Auto Parking System & Auto Billing System Using Image
 Processing Technique (Part 1)...267
 M. M. Rashid

34. Development of Auto Parking System and Auto Billing System Using
 Image Processing Technique (Part 2)..274
 M. M. Rashid

 Processing Technique (Part 3)...281
 M. M. Rashid

36. Automatic Car Parking Management System for Large Parking Lot.............289
 M. M. Rashid

37. Development of Wireless Home Power Monitoring System296
 M. M. Rashid
CHAPTER 20

HUMAN POSTURE RECOGNITION PREPROCESSING TECHNIQUES

Othman O. Khalifaa, Kyaw Kyaw Htikea, Lai Weng Kinb and A. Albagoula

aDepartment of Electrical and Computer Engineering, International Islamic University Malaysia

bCentre for Multimodal Signal Processing, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia

20.1 Introduction

20.1.1 Background Segmentation

Background subtraction is the process of separating out foreground objects from the background in a sequence of video frames. Background subtraction is used in many emerging video applications, such as video surveillance, traffic monitoring, and gesture recognition for human-machine interfaces, to name a few. Many methods exist for background subtraction, each with different strengths and weaknesses in terms of performance and computational requirements. Most were developed in university labs over the last few decades.

As computer vision begins to address the visual interpretation of action [1], applications such as surveillance and monitoring are becoming more relevant. Similarly, recent work in intelligent environments and perceptual user interfaces [2, 3] involve vision systems which interpret the pose or gesture of users in a known, indoor environment. In all of these situations the first fundamental problem encountered is the extraction of the image region corresponding to the person or persons in the room.

Previous attempts at segmenting people from a known background have taken one of three approaches. Most common is some form of background subtraction. For example, some researchers use statistical texture properties of the background observed over extended period of time to construct a model of the background, and use this model to decide which pixels in an input image do not fall into the background class. The fundamental assumption of the algorithm is that the background is static in all respects: geometry, reflectance, and illumination. The second class of approach is based upon image motion only presuming that the background is stationary or at most slowly varying, but that the person is moving [3].

In these methods no detailed model of the background is required. Of course, these methods are only appropriate for the direct interpretation of motion; if person stops moving, no signal remains to be processed. This method also requires constant or slowly varying geometry, reflectance, and illumination. The final approach is based upon geometry. Kanade, et al. [4] employ special purpose multi-baseline stereo hardware to