Advances in Aircraft Structures

Editor
Jaffar Syed Mohamed Ali
Erwin Sulaema

IIUM Press
CONTENTS

Preface i

Contents ii

Contributing Author iv

Aircraft Structural Design and Testing

1 Design of ILUM Aircraft Fuselage Using Composite Material (5168/20210) 1
2 Fabrication and Testing of ILUM Aircraft Fuselage Structure Made of Composite Laminate Material (5168/20223) 8
3 Design and Fabrication of Fuselage Model for Laboratory Purpose (5168/20225) 16
4 Simulation of Fuselage Model for Laboratory Purpose (5168/20228) 24
5 Propeller Blade Stress Analysis using CATIA (4625/20230) 30
6 Lateral Crushing of Composite Fuselages (4625/20232) 37
7 Corrosion Detection in Aircraft Structures by Ultrasonic Method (4980/20233) 45
8 Fatigue Damage Characterization of Aluminum Alloy Plates (4980/20235) 55

Composite Structures (514/20237)

9 Determination of Mechanical Properties of Corrugated Hybrid Composite 63
10 Composite Failure Mechanism of Corrugated Hybrid Composite Subjected to Bending Loading (5168/20239) 70
11 Study of Energy Absorption of Foam-Filled Honeycomb Structure (5168/20241) 79
12 Experimental Study of Indentation on Composite Structure (5168/20245) 86
13 Simulation Study of Composite Structure Subjected to 3 Points Bending Load (5168/20246) 93
14 Experimental Study of the Strength of Sandwich Structure with Honeycomb Core (5168/20248) 101
15 Buckling of Composite Columns (4625/20249) 107
16 Buckling of Composite Perforated Plates (4625/20253) 117
17 Structural Analysis of an Active Beam (4625/20254) 125
18 Characterization of Composite Materials using Full Field Data (6377/20256) 131
19 Application of Virtual Fields Method to Composite Plate Bending Problem
 (6377/20262) 137
20 Mode I Delamination Simulation using LS-DYNA
 (3563/20263) 143

Structural Instability
21 Buckling of Long Column (4625/20264) 150
22 Buckling of Thin Walled Sections (4625/20265) 158
23 Effect of Boundary Conditions on the Buckling Behavior of Perforated Plates
 (4625/20266) 167
24 Effect of Cutout Shape on the Critical Buckling Load of Perforated Plates.
 (4625/20267) 174
25 Experimental Determination of Critical Buckling Load for a Perforated Plate
 (6547/20269) 182
26 Accurate Geometric Stiffness Matrix Formulation of Beam Finite Element
 (6377/20268) 190

Structure Analytical Methods
27 The Constitutive Equation Gap Method (6377/20270) 198
28 The Equilibrium Gap Method (6377/20271) 202
29 The Reciprocity Gap Method (6377/20272) 206
30 The Virtual Fields Method (6377/20273) 210
31 Numerical Construction of Piecewise Virtual Fields (6377/20274) 215
32 Numerical Model of Noise Effect in Full Field Data (6377/20274) 221
33 Optimized Virtual Fields with Noise Minimization (6377/20276) 227
34 Axial Stiffness Matrix of Non-Uniform Bernoulli-Euler Bar Elements
 (6427/20279) 233
35 Finite Element Model Updating (6377/20277) 240
Chapter 2
Fabrication and Testing of IIUM Aircraft
Fuselage Structure Made of Composite Laminate Material

Y. Aminanda, Mir Amirul Shah Bin Esa, Said Hamadi Said Mohamed

Abstract

This chapter describes fabrication and test of IIUM aircraft fuselage structure made from composite laminate structure. The comparison of load calculated using basic theory of thin wall with load obtained from test result will be discussed. The mechanism of failure on the fuselage structure parts will be observed and discussed in detail.

Keywords: Composite, fuselage, failure mechanism, design, aircraft structure, thin wall.

1. Introduction

Proper materials are needed to build the fuselage especially for light weight aircraft. The composite materials become naturally the best candidate to be chosen. The fuselage was taken for discussion to exemplify the principles of structural mechanics employed in aircraft structure. This chapter dealt with the construction process and the test campaign. The content of this chapter is to understand the process of fuselage manufacturing following the optimal design

Advances In Aircraft Structures