MECHATRONICS BOOK SERIES SYSTEM DESIGN AND SIGNAL PROCESSING VOLUME 2 Editors Md. Raisuddin Khan Md. Mozasser Rahman Muhammad Mahbubur Rashid Shahrul Na'im Sidek **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA # MECHATRONICS BOOK SERIES: SYSTEM DESIGN AND SIGNAL PROCESSING - VOLUME 2 #### **Editors** Md. Raisuddin Khan Md. Mozasser Rahman Muhammad Mahbubur Rashid Shahrul Na'im Sidek #### Published by: IIUM Press International Islamic University Malaysia #### First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data ISBN: 978-967-418-132-1 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) ## Printed by: IIUM PRINTING SDN.BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com # **CONTENTS** | | Editorial Notes v | |----|---| | | About the Editors vi | | | Contents vii | | | | | 1. | A Brief Overview of Biomechatronics and Its Applications | | | Nur Izatulnisha A.Rashid, Jamaliah Kassim and Asan G. A. Muthalif | | 2. | Self-Powered Solar Tracking System Part 1: System Modeling and Hardware Selections | | | Asan G. A. Muthalif, Dzairul Hafiz and Haris Shafiq | | 3. | Self-Powered Solar Tracking System Part 2: System Design | | 4. | Self-Powered Solar Tracking System Part 3: System Integration and Testing | | | Asan G.A. Muthalif, Dzairul Hafiz and Haris Shafiq | | 5. | Smart System For Monitoring Electrical Power Usage at Homes | | 6. | Vibration Based Predictive Maintenance: Common Rotating Machinery Faults and Their Signatures | | | Siti F. Mansor, Asan G. A. Muthalif and Nurul 'I. Zaman | | 7. | Modeling of Disc Rotor Induction Motor | ### Contents ### M. M. Rashid, S. Abubakar and R. Tamjis | 8. | Computer Communication for a Smart Card Based Ordering System Via
Visual Basic | | | |-----|---|--|--| | | Siti Fauziah Toha and Rosdiazli Ibrahim | | | | 9. | Electronic Smart Ordering System: Graphical User Interface | | | | 10. | Intruder Avoidance System Via Short Message Service (SMS) | | | | 11. | Anti Skid Control System, A Tutorial | | | | 12. | Intelligent Anti Skid Control System | | | | 13. | Principles of FMCW Radar Signal Processing | | | | 14. | Design and Implementation of a Simple Queueing System for Vehicle Traffic Simulator | | | | 15. | Determination of Target Speed from the FMCW Radar Data | | | | 16. | Intelligent Egg Incubator: Introduction | | | | 17. | Intelligent Egg Incubator: Mechanical Design | | | #### Contents Shahrul Na'im Sidek, Yasir Mohd Mustafah, Urwah Ismail, Nur Hasnaa Che | | Awang | |-----|---| | 18. | Intelligent Egg Incubator: System Integration And Results | | 19. | Human Posture Recognition Classification And Recognition | | 20. | Human Posture Recognition Preprocessing Techniques | | 21. | Path Detection Implementation Using Fuzzy Classifier | | 22. | Mechanical Design Of Unmanned Underwater Vehicle | | 23. | Design And Development Of An Automated Café System | | 24. | Speech Coding Using Compressive Sensing On A Multicore System | | 25. | A Case For Cooperative Vision System | A. A. Shafie and N. Samudin A. A. Shafie, E. A. Syukur and N. I. Sidek ## Contents | 28. | Digital Hearing Aids Analysis And Implementation Othman O. Khalifa, Aisha H. Abdalla and Sheroz Khan | 224 | |-----|---|-----| | 29. | Automatic Intelligent Ordering System: Design And Tools Selection | 233 | | 30. | Automatic Smart Card Purchasing System for Express Kiosk | 240 | | 31. | Finite Element Formulation of Piezoelectric Laminated Composite Plate Iskandar Al-Thani Mahmood and Md. Raisuddin Khan | 247 | | 32. | A Review on Modeling And Shape Control Of Piezoelectric Laminated Composite Plate Using Finite Element Method | 257 | | 33. | Development of Auto Parking System & Auto Billing System Using Image Processing Technique (Part 1) | 267 | | 34. | Development of Auto Parking System and Auto Billing System Using Image Processing Technique (Part 2) | 274 | | 35. | Development of Auto Parking System& Auto Billing System Using Image Processing Technique (Part 3) | 281 | | 36. | Automatic Car Parking Management System for Large Parking Lot M. M. Rashid | 289 | | 37. | Development of Wireless Home Power Monitoring System | 296 | ## CHAPTER 13 #### PRINCIPLES OF FMCW RADAR SIGNAL PROCESSING Wahju Sediono^{1,a} and Andrian Andaya Lestari^{2,b} ¹Department of Mechatronics Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia ²International Research Centre for Telecommunications and Radar – Indonesia (IRCTR-I), Segitiga Emas Business Park, Jl. Prof. Dr. Satrio KAV 6, Jakarta Selatan 12940, Indonesia awsediono@iium.edu.my, blestari@ieee.org #### 13.1 Introduction Frequency Modulated Continuous Wave (FMCW) radar is a short range measuring radar system. During a normal operation this radar system transmits a known stable frequency continuous wave radio energy that is modulated by a triangular modulation signal so that the transmitted signal varies gradually along a certain time period. Variations of modulation such as sine, sawtooth, etc. are possible. The triangle modulation is used in FMCW radars when both range and velocity are to obtain. It is known that the received waveform is a delayed replica of the transmitted waveform, and the time delay is a measure of the range. When operating the radar in FMCW mode the transmitted modulation waveforms are mixed with the delayed replicas (coming from various targets) via the mixer to produce a beat signal, and then analyzed by an FFT algorithm. The beat signals are passed through an analog to digital converter (ADC) and digital processing is performed on the result. In this work the principle of FMCW radar signal processing will be demonstrated on the example of INDERA (the first maritime radar made in Indonesia). INDERA is a FMCW maritime radar that is designed to be installed and operated in a ship [1]. During its normal operation INDERA is continuously transmitting modulated electromagnetic waves to detect targets in the surrounding area. Since the transmitted signal is a continuous wave, it needs only a very small power to transmit it. Consequently, the power level of signals arrived on the Rx-antenna is also very low. Therefore, a reliable signal processing plays a significant role in distinguishing between reflected signals coming from real targets and from other (mostly) unwanted sources. Fig. 13.1: Sawtooth shaped FMCW radar signal.