MECHATRONICS BOOK SERIES

CONTROL AND INTELLIGENT SYSTEMS

Momoh Jimoh E. Salami
Abiodun Musa Aibinu
Yasir Mohd Mustafah

IIUM Press
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
MECHATRONICS BOOK SERIES

CONTROL AND INTELLIGENT SYSTEMS

EDITOR

Momoh Jimoh E. Salami
Abiodun Musa Aibinu
Yasir Mohd Mustafah

IIUM Press
Table of Content

PREFACE... v
EDITOR.. xvi

SECTION 1: INTELLIGENT CONTROL SYSTEM .. 5

Chapter 1 .. 6
Working Principle and Operating Mode of Atomic Force Microscopy
Iskandar Al-Thani Mahmood

Chapter 2 ... 13
Design and Development of controller of Active Power Filter for Industrial Usage part 1
M.M.Rashid1, N.A.Ramin1 and Zaharul1

Chapter 3 .. 21
Design and Development of controller of Active Power Filter for Industrial Usage part 2
M.M.Rashid1, N.A.Ramin1 and Zaharul 2

Chapter 4 ... 30
Design and Implementation of Instant Noodles Vending Machine
M.M.Rashid

Chapter 5 .. 39
Development of Intelligent Belt Conveyor System (Part 1)
M. M. Rashid, Faruk Alliays

Chapter 6 .. 45
Development of Intelligent Belt Conveyor System
M.M.Rashid, Faruk, M J E Salami

Chapter 7 .. 50
Anti Skid Control System, A Tutorial
M. J. E. Salami, A. M. Aibinu, A. F. Salami and Mohd Sofian Bin Basrah

Chapter 8 .. 54
Design and Prototyping of Inertia Wheel

Chapter 9 .. 62
Control of Automatic Drilling Machine by PLC
Md Mozasser Rahman, Najiah Md Zain @Abdul Rahman and Mohd Syazwan Bin Jamil

Chapter 10 .. 74
Automatic Storage and Retrieval System
Abdul Kadir Abdul Jabar Abdul Kadir, M. J. E. Salami and A. M. Aibinu

Chapter 11 ... 80
Control of Unmanned Underwater Vehicle
Raisuddin Khan1,2, Faried Hasbullah2 and Masum Billah3

Chapter 12 .. 85
Adaptive Sliding Mode Control for 3dof Helicopter
Mostafa A. Hamood, Rini Akmeliawati

Chapter 13 ... 93
Backstepping Control of an Autonomous Quadrotor
Norafizah Abas, Rini Akmeliawati

Chapter 14 ... 103
Piezoelectric Tube Scanner in Atomic Force Microscope
Iskandar Al-Thani Mahmood

SECTION II : INTELLIGENT CONTROL SYSTEM DESIGN .. 111

Chapter 15 ... 112
A Review on Control of Two-Wheeled Wheelchair System
Salmiah Ahmad, M. O. Tokhi

Chapter 16 ... 121
A Smart Car Surveillance System using Programmable Logic Controller (PLC)
Siti Fauziah Tohaha and Mohammad Zafran Haja Mohideen

Chapter 17 ... 128
Design of Controller for Elevator Group Using Fuzzy Logic Part 1
M.M.Rashid, Azhar

Chapter 18 ... 133
Design of Controller for Elevator Group Using Fuzzy Logic Controller Part 2
M.M.Rashid, Azhar

Chapter 19 ... 139
Fuzzy Logic-based Intelligent Control of Flexible Link Manipulator
Ismaila B. Tijani and Rini Akmeliawati

Chapter 20 ... 148
EEG based robot control
A. Khorshidulab and M. J. E. Salami

Chapter 21 ... 158
Visual-Based Intelligent Solar Tracking System
Rini Akmeliawati, Samir A. Abdul Karcom, Riza Muhida

SECTION III: INTELLIGENT SYSTEM DESIGN .. 172

Chapter 22 ... 173
Intelligent Air-conditioning System
Amir A. Shafie, Raisuddin Khan, H. Al-haeaid M. Ebrahim

Chapter 23 ... 179
An Intelligent Car Surveillance System: Design and Tools Selection
Siti Fauziah Toha and Mohammad Zafran Haja Mohideen

Chapter 24 ... 185
Automatic Pipe Bursting Monitoring System
M. J. E Salami, Syed Ahmed @ Hla Moe Win

2
Chapter 25
Development of an Intelligent Laundry System
Mohd Hafizi Azmi, Muhammad R. Affendi, M. J. E Salami and A.M. Aibinu

Chapter 26
Development of Palmprint based Biometric System
M. A. Rotinwa-Akinbile, A.M. Aibinu and M. J. E Salami

Chapter 27
Development of Smart Baby Chair
M. J. E Salami, Fatannah M.S. and Fadiah Bt Ismail

Chapter 28
Intelligent Automatic Fruit Identification System
M. Aibinu, M. J. E. Salami, N. Hazali, N. Termidzi, and A. A. Shafie

Chapter 29
Intelligent SCADA-Based Telemetry System for Monitoring and Controlling of Municipal Sewage Treatment Plant: IUM, Gombak As a Case Study

Chapter 30
Development of Prototype Real-time system for SCADA-based Monitoring and Controlling System for Sewage Treatment Plant

Chapter 31
Intelligent Water Heater System
M. J. E Salami and Khairul Ikram Bin Kamarul Bahrin

Chapter 32
Machine Intelligence: MIQ, MSQ, and MEQ
Nahrul Khair Alang Md Rashid and Khairul Affendi Md Nor

Chapter 33
Coil Windings Determination Using Genetic Algorithm
Abiodun Musa Aibinu, M. J. E Salami and Hafsat Farooqi

Chapter 34
Determination of Material Depth Using Artificial Neural Network
Aalya Banu, Sharmila Fathima and Nahrul Khair Alang Rashid

Chapter 35
Design of Ink Refilling Machine For Marker Pen
A. M. Aibinu, Rusnajaa Binti Mohd Yusoff and Liyana Bte Sani

SECTION IV : MODELLING AND SIMULATION

Chapter 36
Hajj Crowd Simulation Based on Intelligent Agent
Teddy Surya Gunawan1,*, Mira Kartiwi2,*, Willy Wahyu Mulyana3,7
Chapter 37. Kernel PCA – An Introduction
Hamza Baalia, Momoh-Jimoh Eyiomika Salamiab, Rini Akmeiawatiac

Chapter 38. System Modelling of a Twin Rotor System: Time and Frequency Domain Analysis
Siti Fauziah Tohaad and M. O. Tokhiab

Chapter 39. System Identification Technique for a Helicopter Using Genetic Algorithms
Siti Fauziah Tohaad and M. O. Tokhiab

Chapter 40. Advanced Noise Removal Techniques for the Detection of EMG Signal
Md. Rezwanul Ahsanad, Muhammad Ibn Ibraniyab, and Othman Omran Khalifaad

Chapter 41. Active suspension system: Part 1 - Mathematical Modelling
Aiman O. Bajabera, Asan G. A. Muthalifb, Ayman S.I. Elzubairc

Chapter 42. Active Suspension System: Part 2 - Controller Design and Simulation
Ayman S.I. Elzubaira, Asan G. A. Muthalifb, Aiman O. Bajaberc

Chapter 43. Book Shelving Robotics
M. J. E. Salamiad, Mohd Farid Md Aliasab, Nurul Izzah Sidekac, Mohamed Mousaad

Chapter 44. Model Structure and Random Input for System Identification Technique for Flexible Manipulating System
Siti Fauziah Tohaad and M. O. Tokhiab

Chapter 45. Fault Tree Analysis, A case study of a simple Line Following Robot
Abiodun Musa Aibinu, Haaris Ahmad Quadri, Mu I1am Mach A Mine, Almehmadi Tarig Saeed S And Hamide Rohimah

Chapter 46. Review of Malaysian Traffic Summon and Payment system
A. M. Aibinu,Sharifah Nadiah bt Syed Mohammad, Wan Nur Faezah bin Wan Azmi
Chapter 34
Determination of Material Depth Using Artificial Neural Network

Aalya Banu, Sharmila Fathima and Nahrul Khair Alang Rashid
Faculty of Engineering – International Islamic University Malaysia
aalya.banu@gmail.com; sharmi.hameed@gmail.com; nahrul@iiutm.edu.my

34.1 Introduction

Defect identification in any industry is a crucial phase in the manufacturing process. For this purpose, Non Destructive Testing (NDT) technique, which is the inspection of the material in a manner that will not make it unsuitable for further service, is employed[1]. This testing is carried out at the time of production for quality control or when the component is in service for troubleshooting and maintenance.

Although, there are many NDT techniques that are studied and practiced, each method is suited to detecting particular faults. The most common NDT methods are eddy current, ultrasonic and radiography depending on the applications and the concerned material under test.[2] For this project three methods are implemented namely, eddy current, ultrasonic and infrared. A brief summary of the methods is given below.

34.1.1 Eddy current (EC) testing is essentially a near-surface technique for the inspection of metallic parts. In standard eddy current testing, a circular coil carrying an AC current is placed in close proximity to an electrically conductive specimen [3]. The alternating current in the coil generates a changing magnetic field, which interacts with the test object and induces eddy currents. Variations in the phase and magnitude of these eddy currents can be monitored using a second 'search' coil, or by measuring changes to the current flowing in the primary 'excitation' coil. [4] Variations in the electrical conductivity or magnetic permeability of the test object, or the presence of any flaws, will cause a change in eddy current flow and a corresponding change in the phase and amplitude of the measured current. This is the basis of standard (flat coil) eddy current inspection, the most widely used eddy current technique.[5]

34.1.2 Ultrasonic testing involves sending high frequency vibrations (100 kHz to 200 kHz) through a material and sensing their reflections [6]. Ultrasonic testing involves sending high frequency vibrations (100 kHz to 200 kHz) through a material and sensing their reflections. The high frequency vibrations are produced by a transducer, which uses a piezoelectric crystal to convert electrical oscillations into mechanical vibrations [6]. The transducer is placed on the surface of the material to be tested. Vibrations penetrate the material and are refracted and reflected at discontinuities within the material. Another transducer picks up the reflected signal which is displayed on an oscilloscope. The resulting reflection indicates the internal integrity of the test specimen.

34.1.3 Infrared Emission is a detection system for identifying surface irregularities such as cracks, pits, scratches in a part that is made of a material having a relatively high reflectivity and a relatively low emissivity such as titanium, aluminium etc [7]. An infrared transmitter generates an infrared signal on the surface of the part to be tested. The infrared signal generates an output voltage corresponding to the infrared signal reflected by the surface. A display that is connected to the infrared receiver displays the corresponding voltage of the infrared signal. This voltage is compared to a threshold voltage to declare the surface irregularity. The voltage is lower for deeper crack and vice versa.