MECHATRONICS BOOK SERIES:
SYSTEM DESIGN AND SIGNAL PROCESSING - VOLUME 1

Editors
Asan G. A. Muthalif
Amir Akramin Shafie
Siti Fauziah Toha
Iskandar Al-Thani Mahmood

IIUM Press
CONTENTS

Editorial Notes ... v
About the Editors .. vi
Contents ... vii

1 Energy Harvesting For Wide Area Sensor Networks 1
 Nahrul Khair Alang Md Rashid and Mohamad Ghazali Ameer Amsa

2 Design And Development Of Automatic Paper Box Folding Machine 8
 Md Mozasser Rahman, Anwar Hussain bin Mohamed Rasied and Ahmad Zulkamal Ismail

3 Intelligent Shoe Guard System .. 20
 M. J. E. Salami, A. M. Aibinu, Siti Sarah binti Mohd Sufian

4 Applications of Mechatronics Engineering In Modern Agriculture 29
 Nahrul Khair Alang Md Rashid

5 Mathematical Modeling of Counter Flow Scrubber Using Eulerian-
 Lagrangian Approach ... 34
 Bashir Ahmed Danzono and Momoh Jimoh E. Salami

6 Auto Landmarks Generation For SLAM Algorithm 42
 Nahrul Khair Alang Md Rashid and Imama Karim Manha Usama

7 Automatic Intelligent Ordering System Design and Tools Selection 46
 Siti Fauziah Toha and Rosdiazli Ibrahim

8 Design And Development of a Sorting Machine Using Multiple Sensory
 System ... 52
 Md Mozasser Rahman1, Siti Fatimah binti Abdul Rahim

vii
9 Design and Development of Intelligent Wiper for Vehicle Windshield: Mechanical Design

Shahrul Na'im Sidek, Abd Rahman Ibrahim

58

10 Design and Development of Intelligent Wiper for Vehicle Windshield: Electrical Design

Shahrul Na'im Sidek, Mohammad Afhamuddin Ab Aziz

63

11 Design and Development of Intelligent Wiper for Vehicle Windshield: Final Assembly And Results

Shahrul Na'im Sidek, Mohammad Afhamuddin Ab Aziz

68

12 Design and Prototyping of Inertia Wheel

73

13 Design and Implementation of Instant Noodles Vending Machine

M.M. Rashid

80

14 Mathematical Model for Three Tank System

W. Astuti, R. Alimuddin, A.M. Aibinu, Momoh Jimoh E. Salami and Wahyudi Martono

88

15 Design of Software Tool to Detect QRS Complex from ECG Signal

Wahju Sediono

98

16 Development of a Jet Powered Floating Platform (In Air)

M. Zharif, Raisuddin Khan and Masum Billah

104

17 Development of Experimental Station for Earthquake Prediction

A. M. Aibinu, M. J. E. Salami, Asan Gani Muthalif, Sumaiyah Mior Badri, Sarah Khalidah and Nuruleeman Saat

109

18 Development of Robotic Manipulator to Assist Human by Using Brain Signal

Rodhiah, Raisuddin Khan and Masum Billah

117

19 Development of Unmanned Aerial Vehicle – Part I

Shahrul Na'im Sidek, M. Ismail Mohtar, A Mushawwir M Khalil

123
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Development of Unmanned Aerial Vehicle – Part 2</td>
<td>Shahrul Na'im Sidek, A Mushawwir M Khalil, M. Ismail Mohtar</td>
</tr>
<tr>
<td>23</td>
<td>Electrooculography (EOG)-Controlled Wheelchair</td>
<td>Shahrul Na'im Sidek, M. Iqbal Zakaria and A. Ridwan A. Aziz</td>
</tr>
<tr>
<td>24</td>
<td>Conceptual Design of an Intelligent Coconut Dehusking</td>
<td>M. J. E. Salami., A. M. Aibinu</td>
</tr>
<tr>
<td>25</td>
<td>An Electrooculogram (EOG) Signal for Wheelchair Motion Control</td>
<td>Salmiah Ahmad, Nurul Muthmainnah Mohd Noor</td>
</tr>
<tr>
<td>27</td>
<td>GIS-Based Vehicle Traffic Simulation</td>
<td>Wahju Sediono</td>
</tr>
<tr>
<td>28</td>
<td>Intelligent Postal Mails Sorter</td>
<td>Mohd Arif Faiz Bin Omar, Mohd Zain Bin Ismail, M. J. E. Salami, A. M. Aibinu</td>
</tr>
<tr>
<td>29</td>
<td>Intelligent Wet Scrubber System for Industrial Air Pollution Control</td>
<td>Bashir Ahmed Danzomo and Momoh Jimoh E. Salami</td>
</tr>
<tr>
<td>30</td>
<td>Leveraging on Nature for Systems Design</td>
<td>Nahrul Khair Alang Md Rashid and Safinaz Kader Mohideen</td>
</tr>
<tr>
<td>31</td>
<td>Natural Ventilation of Yam Storage System</td>
<td>Murtala Abdulazeez, M.J.E. Salami, Md. Raisuddin Khan</td>
</tr>
<tr>
<td>32</td>
<td>Self-Repair Capability in Engineering Systems</td>
<td>Nahrul Khair Alang Md Rashid and Aous Naji Rasheed</td>
</tr>
</tbody>
</table>
33 Simulation of Airflow and Temperature Distribution in Yam Storage System
Murtala Abdulazeez, M.J.E. Salami, Md. Raisuddin Khan, Nabeel Adeyemi

34 Sound Identification in Noisy Environment.. 218
Nahrul Khair Alang Md Rashid, Nor Hidayati Diana Nordin and Alim Sabur Ajibola

35 Intelligent CCTV-Based Monitoring System for Kulliyyah of Engineering, IIUM... 225
M. J. E. Saslami, A. M. Aibinu and Nur Syahirin binti Mohd Jahini

36 Virtual Modeling of Two-Wheeled Wheelchair using Msc Visual Nastran 4D... 231
Salmiah Ahmad, M. O. Tokhi
CHAPTER 36

Virtual Modeling of Two-Wheeled Wheelchair using MSc Visual Nastran 4D

Salmiah Ahmad1, a, M. O. Tokhi2, b

1Department of Mechatronics Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia

2Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, S1 3JD, United Kingdom

asalmiah@iium.edu.my, bo.tokhi@sheffield.ac.uk

36.1 Introduction

Wheelchair on two wheels is a very complex, highly nonlinear system that has several complicated features to be modelled and controlled, [1]. A human has a significant mass when sitting on the wheelchair, thus the two-wheeled wheelchair is modelled with double links that mimic double inverted pendulum scenario. Therefore maintaining the nonlinear feature in two-wheeled wheelchair would be very much needed so that the approach may be easily implemented in practice. Therefore, a new wheelchair model is developed using four-dimension (4D) design software called MSC Visual Nastran 4D (VN). This modelling software can provide visualization showing the lifting, stabilizing as well as other wheelchair mobility features and has been used for many other applications, [2-5]. It is used to model the standard wheelchair and to integrate with MATLAB/Simulink for control purposes. The wheelchair model developed is used for designing and testing control strategies thus saving time, energy and financial cost before it is implemented at laboratory level or manufactured.

36.2 MSC Visual Nastran 4D software

MSC Visual Nastran 4D (VN) is a powerful general purpose finite element analysis solution for small to complex assemblies. It combines several tasks in a user friendly environment involving computer-aided design (CAD), motion, finite element analysis (FEA), measurement as well as control. It provides a wide range of modelling and analysis capabilities, including linear static, displacement, strain, stress, vibration, heat transfer and more. Moreover, it can handle any material type from plastic and metal to composites and hyperelastic materials. It can be associated with most of the drawing tools such as Autodesk Inventor and Mechanical Desktop, Solid Edge and Solid Works. Some measurement capabilities of VN are, to measure forces, torques, friction, velocity and collisions using meters provided in the software environment. It can also determine vibration modes, buckling and heat transfer on a system modelled. The software is able to calculate loads and stresses of the assembly automatically. One of the specialties of VN is facilities of rendering and animation where simulation video can be captured and replayed at any time. Different camera locations can be used to obtain various angles of simulation. VN allows integration between the designed models with control strategies in MATLAB/Simulink environment; VN icon will appear in Simulink library tool box such that the model in VN is called using this icon. Input and output of the model in VN is defined using this icon, which can be seen as in Fig. 36.1.