Alternative Energy Edited by A.K.M. Mohiuddin Asif Hoda ## Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data A.K.M. Mohiuddin and Asif Hoda Alternative Energy A.K.M. Mohiuddin and Asif Hoda Include index Bibliography: p. ISBN 978-967-418-158-1 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by : IIUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan # **Table of Contents** | Table of Contentsv | |--| | Prefaceviii | | Chapter 1 | | The Impact of energy utilization on environment | | M.N.A. Hawlader | | Chapter 2 | | Desalination of Seawater to provide fresh water9 | | M.N.A. Hawlader | | Chapter 3 | | A solar assisted desalination system using heat pump | | M.N.A. Hawlader, Leong Chiing Yang | | Chapter 4 | | An experimental study of a phase change storage system | | M.N.A. Hawlader and Smita Panga | | Chapter 5 | | Moisture migration in a grain column subjected to drying | | M.N.A. Hawlader and Md. Shafique J. Chowdhury | | Chapter 6 | | Solar Drying of Guavas, Papayas and Apples38 | | M.N.A. Hawlader and Lee Hwee Peng | | Chapter 7 | | Drying under inert environment: the quality of Mango and Rockmelon47 | | M.N.A. Hawlader and Pan Jiahe | | Chapter 8 | | A low temperature flat plate solar collector | | M.N.A. Hawlader, M. Zakir Ullah and Maung Than Htut | | Chapter 9 | | Optimization of an integrated solar heat-pump system | | M N A Hawlader and Ye Shaochun | | Chapter 10 | | Comparative study of performance characteristics using Jatropha Oil Methyl Esters | | Biodiesel and Diesel 69 | | A.K.M. Mohiuddin and Azan Mohd | | Chapter 11 | | Comparative Study of Emission Characteristics using Jatropha Oil Methyl Esters Biodiesel | | and Diesel | | A.K.M. Mohiuddin and Azan Mohd | | Chapter 12 | | Waste Cooking Oil Utilization for Biodiesel Production | | A.K.M. Mohiuddin and Nabeel Adeyemi | | Chapter 13 | | Flow Characteristic of Mixing Impeller for Liquid-Liquid Mixing | | A.K.M. Mohiuddin and Nabeel Adeyemi | | Chapter 14 | | Solar Energy Management for Poverty Alleviation and Income Generating Activities 91 | | A.K.M. Mohiuddin | | Chapter 15 | | |--|-----| | Turbulence model for axial mixing impeller in unbaffled vessel | 97 | | A.K.M. Mohiuddin, Nabeel Adeyemi and Muhamad Husaini | | | Chapter 16 | | | Optimization and economic analysis of a solar assisted heat pump drying system 10 | 03 | | M.N.A. Hawlader, S. M. A. Rahman and K.A. Jahangeer | | | Chapter 17 | | | A solar heat pump water heater for rural hospitals | 17 | | M.N.A. Hawlader and M. Zakir Ullah | | | Chapter 18 | | | A solar heat-pump system for air-conditioning, water heating and drying | 26 | | M N A Hawlader, K A Jahangeer, Ye Shaochun and Choy Tack Hoon | | | Chapter 19 | | | Engineering design – An approach to the development of creativity | 32 | | M.N.A. Hawlader | | | Chapter 20 | | | Analysis of Engine Performance with NGV | 40 | | Sany Izan Ihsan, Nabila Sulaiman, AKM Mohiuddin and Maizirwan Mel | •• | | Chapter 21 | | | Analysis of Engine Performance with Enhanced Fuel | 47 | | Sany Izan Ihsan, Khairussani Farid, Maizirwan Mel, and AKM Mohiuddin | • ' | | Chapter 22 | | | CFD analysis of an evacuated solar still. | 56 | | Ahmad F. Ismail, Mirghani I. Ahmed, Yousif A. Abakr | | | Chapter 23 | | | Developments on Solar Operated Water Desalination | 63 | | Mirghani I. Ahmed, Yousif A. Abakr and Ahmad F. Ismail | | | Chapter 24 | | | Theoretical and experimental evaluation of LPG as refrigerant for domestic refrigerators | | | and freezers | | | M.M. El-Awad, M.I. Ahmed | - | | Chapter 25 | | | Preliminary investigation of biodiesel reactor optimization using combine CFD-Taguchi | | | method | | | A.K.M. Mohiuddin and Nabeel A Adeyemi | | | Chapter 26 | | | Alternative mixing strategy for biodiesel production: mixed flow impeller characterization | n | | | | | A.K.M. Mohiuddin and Nabeel Adeyemi | | | Chapter 27 | | | Experimental Investigation of a Multistage Evacuated Solar Still | 97 | | Yousif, A. Abakr, Ahmad F. Ismaill and Mirghani I. Ahmed | | | Chapter 28 | | | Modelling of electronics heat sink – Influence of the wake function generation on the | | | accuracy of CFD analysis20 | 03 | | M. I. Ahmed, A. F. Ismail, Y. A. Abakr | | | Chapter 29 | | | The effect of the operating conditions on the apparent viscosity of crude palm oil during | | | • | 13 | | Sulaiman Al-Zuhair, Yousif A. Abakr and Mirghani I. Ahmed | |--| | Chapter 30 | | Thermal analysis of a micro device used for detection of colorectal cancer | | Mirghani I. Ahmed, Meftah Hrairi | | Chapter 31 | | Performance of different photovoltaic cells operating under the meteorological conditions | | of Singapore229 | | M.N.A Hawlader, Lee Poh Seng and Chua Kok Kiang | | Chapter 32 | | Analyses of motion and drag coefficient of water droplets in a natural draught cooling | | tower | | Liu Baomin and M. N. A. Hawlader | | Chapter 33 | | A solar assisted heat pump system for desalination | | Zakaria Mohd. Amin, M. N. A. Hawlader and Azharul Karim | | Chapter 34 | | Comparative study of combustion characteristics using Jatropha oil methyl esters biodiese | | and diesel | | A.K.M. Mohiuddin and Azan Mohd | | Chapter 35 | | Performance of evaporator collector and air collector in a solar assisted heat pump dryer. | | | | S. M. A. Rahman and M. N. A. Hawlader | ## Chapter 4 An experimental study of a phase change storage system ### M.N.A. Hawlader and Smita Panga* Department of Mechanical Engineering. Kulliyyah of Engineering, International Islamic University Malaysia *Department of Mechanical Engineering, National University of Singapore #### Abstract This paper describes the heat transfer process and the movement of the solid-liquid interface when the energy is added to a PCM, paraffin wax, through a vertical wall heated under conditions of uniform heat flux and constant temperature. Experiments indicate that the initial mode of heat transfer in the melting process was purely conduction controlled, and early convection due to volumetric expansion of the liquid PCM was followed by the solely buoyancy driven natural convection within the liquid. At this stage, the superheating of the liquid led to a combined convection and conduction mode of heat transfer until eventually conduction became the dominant mode of heat transfer. Superheating and subcooling of the PCM reduce the rate of propagation of the solid-liquid interface. Numerical simulation, based on the enthalpy formulation, indicated the presence of convection in the fluid region of the PCM, which is confirmed by the results from the experiments. Keywords: Phase change materials, latent heat storage, heat transfer processes, melt profiles #### INTRODUCTION Melting and freezing are frequently encountered in the present technology of casting and metallurgical processes, cryogenic preservation of blood, biomaterials, and thermal energy storage systems. Among these possible applications, interest has been on the use of latent heat solar walls in passive solar heating of homes (Lane, 1980). In the early studies, Carslaw and Jaeger (1959) concluded that conduction alone played the vital part in melting of the PCM. Subsequently, experimental evidence produced by Sparrow et al.(1978), and Viskanta and Bathelt (1980) indicated that conduction was present only in the initial stages of the melting while natural convection within the melt region has a greater influence on the shape and the motion of the solid-liquid interface. Hamdan (1996) further analysed that during the convection mode of heat transfer, heat is transferred across the hot boundary layer at the heated wall and the cold boundary layer at the solid-liquid interface. Numerical analysis by Bejan (1989) shed light on the effect of superheating on the melting