Alternative Energy

Edited by

A.K.M. Mohiuddin
Asif Hoda

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

A.K.M. Mohiuddin and Asif Hoda Alternative Energy A.K.M. Mohiuddin and Asif Hoda Include index Bibliography: p.

ISBN 978-967-418-158-1

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by : IIUM PRINTING SDN. BHD.

No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Table of Contents

Table of Contentsv
Prefaceviii
Chapter 1
The Impact of energy utilization on environment
M.N.A. Hawlader
Chapter 2
Desalination of Seawater to provide fresh water9
M.N.A. Hawlader
Chapter 3
A solar assisted desalination system using heat pump
M.N.A. Hawlader, Leong Chiing Yang
Chapter 4
An experimental study of a phase change storage system
M.N.A. Hawlader and Smita Panga
Chapter 5
Moisture migration in a grain column subjected to drying
M.N.A. Hawlader and Md. Shafique J. Chowdhury
Chapter 6
Solar Drying of Guavas, Papayas and Apples38
M.N.A. Hawlader and Lee Hwee Peng
Chapter 7
Drying under inert environment: the quality of Mango and Rockmelon47
M.N.A. Hawlader and Pan Jiahe
Chapter 8
A low temperature flat plate solar collector
M.N.A. Hawlader, M. Zakir Ullah and Maung Than Htut
Chapter 9
Optimization of an integrated solar heat-pump system
M N A Hawlader and Ye Shaochun
Chapter 10
Comparative study of performance characteristics using Jatropha Oil Methyl Esters
Biodiesel and Diesel 69
A.K.M. Mohiuddin and Azan Mohd
Chapter 11
Comparative Study of Emission Characteristics using Jatropha Oil Methyl Esters Biodiesel
and Diesel
A.K.M. Mohiuddin and Azan Mohd
Chapter 12
Waste Cooking Oil Utilization for Biodiesel Production
A.K.M. Mohiuddin and Nabeel Adeyemi
Chapter 13
Flow Characteristic of Mixing Impeller for Liquid-Liquid Mixing
A.K.M. Mohiuddin and Nabeel Adeyemi
Chapter 14
Solar Energy Management for Poverty Alleviation and Income Generating Activities 91
A.K.M. Mohiuddin

Chapter 15	
Turbulence model for axial mixing impeller in unbaffled vessel	97
A.K.M. Mohiuddin, Nabeel Adeyemi and Muhamad Husaini	
Chapter 16	
Optimization and economic analysis of a solar assisted heat pump drying system 10	03
M.N.A. Hawlader, S. M. A. Rahman and K.A. Jahangeer	
Chapter 17	
A solar heat pump water heater for rural hospitals	17
M.N.A. Hawlader and M. Zakir Ullah	
Chapter 18	
A solar heat-pump system for air-conditioning, water heating and drying	26
M N A Hawlader, K A Jahangeer, Ye Shaochun and Choy Tack Hoon	
Chapter 19	
Engineering design – An approach to the development of creativity	32
M.N.A. Hawlader	
Chapter 20	
Analysis of Engine Performance with NGV	40
Sany Izan Ihsan, Nabila Sulaiman, AKM Mohiuddin and Maizirwan Mel	••
Chapter 21	
Analysis of Engine Performance with Enhanced Fuel	47
Sany Izan Ihsan, Khairussani Farid, Maizirwan Mel, and AKM Mohiuddin	• '
Chapter 22	
CFD analysis of an evacuated solar still.	56
Ahmad F. Ismail, Mirghani I. Ahmed, Yousif A. Abakr	
Chapter 23	
Developments on Solar Operated Water Desalination	63
Mirghani I. Ahmed, Yousif A. Abakr and Ahmad F. Ismail	
Chapter 24	
Theoretical and experimental evaluation of LPG as refrigerant for domestic refrigerators	
and freezers	
M.M. El-Awad, M.I. Ahmed	-
Chapter 25	
Preliminary investigation of biodiesel reactor optimization using combine CFD-Taguchi	
method	
A.K.M. Mohiuddin and Nabeel A Adeyemi	
Chapter 26	
Alternative mixing strategy for biodiesel production: mixed flow impeller characterization	n
A.K.M. Mohiuddin and Nabeel Adeyemi	
Chapter 27	
Experimental Investigation of a Multistage Evacuated Solar Still	97
Yousif, A. Abakr, Ahmad F. Ismaill and Mirghani I. Ahmed	
Chapter 28	
Modelling of electronics heat sink – Influence of the wake function generation on the	
accuracy of CFD analysis20	03
M. I. Ahmed, A. F. Ismail, Y. A. Abakr	
Chapter 29	
The effect of the operating conditions on the apparent viscosity of crude palm oil during	
•	13

Sulaiman Al-Zuhair, Yousif A. Abakr and Mirghani I. Ahmed
Chapter 30
Thermal analysis of a micro device used for detection of colorectal cancer
Mirghani I. Ahmed, Meftah Hrairi
Chapter 31
Performance of different photovoltaic cells operating under the meteorological conditions
of Singapore229
M.N.A Hawlader, Lee Poh Seng and Chua Kok Kiang
Chapter 32
Analyses of motion and drag coefficient of water droplets in a natural draught cooling
tower
Liu Baomin and M. N. A. Hawlader
Chapter 33
A solar assisted heat pump system for desalination
Zakaria Mohd. Amin, M. N. A. Hawlader and Azharul Karim
Chapter 34
Comparative study of combustion characteristics using Jatropha oil methyl esters biodiese
and diesel
A.K.M. Mohiuddin and Azan Mohd
Chapter 35
Performance of evaporator collector and air collector in a solar assisted heat pump dryer.
S. M. A. Rahman and M. N. A. Hawlader

Chapter 3

A solar assisted desalination system using heat pump

M.N.A. Hawlader, *Leong Chiing Yang

Department of Mechanical Engineering, Kulliyyah of Engineering,

International Islamic University Malaysia

*Department of Mechanical Engineering, National University of Singapore

ABSTRACT

This paper includes results of an investigation carried out on a desalination plant which consists of a direct expansion solar assisted heat pump (DXSAHP) coupled to a single-effect evaporator unit. The working fluid used in the heat pump is R134a. The distillate is obtained via falling film evaporation and flashing in the evaporator. Experiments have been conducted under both day and night meteorological conditions in Singapore and the effects of solar irradiation and compressor speed—on the performance of the system have been investigated. From the experiments, the performance ratio was found to vary between 0.43 and 0.88, the average coefficient of performance was 8 and the highest distillate production recorded was 1.38kg/hr.

Keywords: Solar desalination, single-effect; heat pump; non-conventional collectors.

INTRODUCTION

Desalination systems enable the conversion of seawater into portable water and alleviate water shortages in many parts of the world, especially in the Middle East. As global population increases, while more water sources get polluted, desalination will play an increasingly important role. There are three basic methods of desalination: multi-stage flashing (MSF) and multi-effect distillation (MED); reverse osmosis (RO); and electro-dialysis (ED). Most desalination methods are energy-intensive processes and, hence, the cost of water production dependents on the prices of fossil fuels. Kalogirou [1] and Miller [2] pointed out that reducing energy consumption can have a major impact on overall water costs. Tzen and Morris [3] proposed the use of renewable energy sources (RES) coupled with existing technologies as one method, whereby, reliance on fossil fuels can be reduced; desalination costs can be lowered in the long run and does not result in environmental degradation. Rodriguez and Camacho [4] considered the use of solar energy as one of the most promising applications of renewable energy for desalination.

The heat pump is a useful device in transforming low-grade heat from the air, ground and solar radiation into a usable source. Experiments were performed on the use of heat pumps for desalination