Nasir Ganikhodjaev Farrukh Mukhamedov Pah Chin Hee **VOLUME 1** x' = 2xy y' = 2xz # INVESTIGATIONS ON PURE MATHEMATICS, FINANCE MATHEMATICS AND OPTICS Proceedings of the Department of Computational and Theoretical Sciences Kulliyyah of Science, IIUM $w_1(x, y, z) = z$ $w_2(x, y, z) = z$ $z' = x^2 + y^2 + z^2 + 2yz$ $w_1 N_1 w_1 = N_{17}$ # **Investigations on Pure Mathematics, Finance Mathematics and Optics** Nasir Ganikhodjaev Farrukh Mukhamedov Pah Chin Hee ## Published by. IIUM Press International Islamic University Malaysia First Edition, 2011 ©IIUM Press, IIUM All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Nasır Ganikhodjaev, Farrukh Mukhamedov & Pah Chin Hee Investigations on Pure Mathematics, Finance Mathematics and Optics ISBN: 978-967-418-198-7 Member of Majlıs Penerbitan İlmiah Malaysıa – MAPIM (Malaysıan Scholarly Publishing Council) Printed by IIUM PRINTING SDN.BHD. No 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan ## **Contents** #### Preface #### Part I Pure Mathematics Concentration | Chapter 1 | THE BEHAVIOR OF TRAJECTORY OF ξ ^s QUADRATIC STOCHASTIC OPERATIONS | • | |------------|--|-----| | | | 2 | | Chapter 2 | THEORY OF MARKOV CHAINS IN PEDIATRIC DISEASES | 8 | | Chapter 3 | ON NONLINEAR DYNAMIC SYSTEMS ARISING IN POTTS MODEL | 14 | | Chapter 4 | THE FIRST RETURN TIME AND DIMENSION | 22 | | Chapter 5 | ON AS SOCIATIVE ALGEBRAIC STRUCTURE OF GENETIC INHERITANCE | 31 | | Chapter 6 | INTERACTING PARTICLE SYSTEM | 37 | | Chapter 7 | DYNAMICS OF GENERALIZED LOGISTIC MAPS | 43 | | Chapter 8 | GEOMETRIC BROWNIAN MOTION AND CALCULATION OF OPTION PREMIUM IN BLACK SCHOLES MODEL | 50 | | Chapter 9 | ON THE ELEMENTARY CHARACTEFIZATION OF PRIMES IN PRIMALITY TESTS: TWO SHORT STUDIES. | 57 | | Chapter 10 | ON ASSOCIATIVE ALGEBRAIC STRTJCTURE OF GENETIC INHERITANCE | 64 | | Chapter 11 | SOME APPLICATION OF ERGODIC THEORY IN NUMBER THEORY | 70 | | Chapter 12 | STUDY OF ROLES OF EXTERNAL MAGNETIC FIELD ON ISING AND POTTS MODEL | 76 | | Chapter 13 | INVESTIGATION OF STABILITY OF FIXED POINTS OF NONLINEAR DISCRETE DYNAMICAL SYSTEMS | 82 | | Chapter 14 | MARKOV CHAINS AND ITS APPLICATION: THE INVENTORY MODEL | 90 | | Chapter 15 | PHASE TRANSITION FOR ISING MODEL WITH TWO COMPETING INTERACTION ON CAYLEY TREE OF ORDER 4 | 96 | | Chapter 16 | LIMIT BEHAVIOR OF DYNAMIC SYSTEMS CORRESPONDING TO LATTICE MODELS WITH COMPETING PROLONGED AND ONE-LEVEL BINARY INTERACTIONS | 101 | | Chapter 17 | ASSOCIATIVE ALGEBRA IN GENETIC INHERITANCE | 109 | | Chapter 18 | ON ξ ^a - QUADRATIC STOCHASTIC OPERATORS AND THEIR CLASSIFICATIONS | 115 | ### Part II Finance Mathematics Concentration | Chapter 19 | ANALYZING THE PERFORMANCE OF INVESTMENT STRATEGY OF EPF | 123 | |------------|--|-----| | Chapter 20 | PREDICTION OF STOCK PRICE USING NEURAL NETWORK | 130 | | Chapter 21 | COMPARISON BETWEEN CONVENTIONAL AND ISLAMIC BOND IN MALAYSIA | 136 | | Chapter 22 | STOCK PERFORMANCE ANALYSIS BETWEEN MALAYSIAN AIRLINES
SYSTEM BERHAD AND AIRASIA BERHAD | 144 | | Chapter 23 | ISLAMIC PAWNBROKING (AR-RAHNU) AS A MICRO CREDIT INSTRUMENT IN MALAYSIA | 151 | | Chapter 24 | ANALYSIS OF CRUDE PALM OIL FUTURES PRICES TRADED ON BURSA MALAYSIA | 160 | | Chapter 25 | AN EMPIRICAL STUDY ON THE EFFICIENCY OF THE TRIM AND FILL METHOD IN CORRECTING PUBLICATION BIAS IN META ANALYSIS | 166 | | Chapter 26 | PERFORMANCE ANALYSIS OF INSURANCE AND TAKAFUL INDUSTRIES IN MALAYSIA | 171 | | Chapter 27 | ANALYSIS OF DATA USING MULTILEVEL MODELLING WITH MLwiN | 179 | | Chapter 28 | FINANCIAL PERFORMANCE OF' ISLAMIC BANKING AND CONVENTIONAL BANKING IN MALAYSIA | 186 | | Chapter 29 | A STUDY ON THE EFFECT OF PUBLICATION BIAS IN META ANALYSIS | 194 | | Chapter 30 | RATIO ANALYSIS: BANK ISLAM MALAYSIA BERHAD (BIMB) & MALAYAN BANKING BERHAD (MAYBANK) | 201 | | Chapter 31 | AN ANALYSIS OF MALAYSIAN UNIT TRUST FUNDS: ISLAMIC VS
CONVENTIONAL | 207 | | | Part III Optics Concentration | | | Chapter 32 | QUANTUM TRAJECTORY METHOD USING MPI PARALLEL COMPUTING | 214 | | Chapter 33 | LINEAR WAVE PROPAGATION IN SINGLE MODE OPTICAL FIBRE | 220 | | Chapter 34 | THE OPTICAL RAY TRACING TECHNIQUE IN LENS SYSTEM WITHIN AND BEYOND PARAXIAL APPROXIMATION | 226 | | Chapter 35 | WAVE PROPAGATION IN NONLINEAR AND HOMOGENEOUS MEDIAKERR MEDIA | 234 | | Chapter 36 | MATRIX METHODS OF OPTICAL RESONATORS | 240 | #### DYNAMICS OF GENERALIZED LOGISTIC MAPS Intan Nurul Dayana Alladad Assoc. Prof. Dr. Farrukh Mukhamedov **Abstract.** This thesis is written to discuss the dynamics of generalized logistic maps. We consider such kind of logistic maps $f(x) = x(1-x^2)$ and $f(x) = x(1-x^2)$. The function $f(x) = x(1-x^2)$ has a unique fixed point and it has two periodic points of period two. The fixed point is a neutral fixed point and both of the periodic points are repelling. The function $f(x) = x(1-x^2)$ has three fixed points and it has six periodic points of period two. The behaviour of fixed points and periodic points are attracting, repelling and neutral in a certain range. #### 1 Function $f(x) = x(1 - \mu x^2)$ Devoted to investigate about the function $$f(x) = x(1 - \mu x^2), \mu > 0,$$ We will find the fixed points, the periodic points, eventually fixed points, and the behaviour of the fixed and periodic points. #### 1.1 Fixed Points First of all, we have to find the fixed points of $f(x) = x(1 - \mu x^2)$. The fixed points are given by following equation f(x) = x. Hence we have $$x(1 - \mu x^2) = x$$ $$x(1 - \mu x^2 - 1) = 0$$ Solving equation above we have, $$x = 0$$ or $1 - \mu x^2 - 1 = 0$ therefore $$-\mu x^2 = 0 \text{ or } x = 0$$ So we get x = 0 as a unique fixed point of $f(x) = x(1 - \mu x^2)$. Figure 1.1: Fixed point when $\mu = 0.1$ and $\mu = 1$ show that the fixed point is 0.