ADVANCED TOPICS IN MECHANICAL BEHAVIOR OF MATERIALS

Edited by

Meftah Hrairi

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
ADVANCED TOPICS IN MECHANICAL BEHAVIOR OF MATERIALS

Edited by

Meftah Hrairi

IIUM Press
Contents

Preface ... x
Acknowledgments .. xii
Editor .. xiv
Contributors .. xvii

Section 1 Buckling

1 Cylindrical Shell Buckling Under Axial Compression Load 3
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

2 Experimental Setup of Empty and Water Filled Cylindrical Shell Buckling 8
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

3 Experimental Results of Empty and Water Filled Cylindrical Shell Buckling 13
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

4 Experimental Results of Empty and Water Filled Cylindrical Shell Buckling for 50mm Stroke 18
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

5 Experimental Results of Empty and Water Filled Cylindrical Shell Buckling for 60mm Stroke 24
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

6 Simulation Setup of Empty and Water Filled Cylindrical Shell Buckling 30
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

7 Simulation Results of Empty and Water Filled Cylindrical Shell Buckling 35
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

8 Experimental and Simulation Results of Cylindrical Shell Buckling 41
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

9 Buckling and Crush Analysis of Light Weight Structure ... 48
 Kassim A. Abdullah and Wan Nur Hidayah Wan Sulaiman

10 Analysis of Lightweight Structural Tubes for Crashworthy Car Body 54
 Kassim A. Abdullah and Zahra Roslan

Section 2 Impact

11 Pipe Whip Impact .. 61
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

12 Experimental Setup of Pipe Whip Impact .. 66
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Experimental Results of Pipe Whip Impact</td>
<td>Qasim H. Shah, Hasan M. Abid, Adib B. Rosli</td>
</tr>
<tr>
<td>15</td>
<td>Simulation Results of Pipe Whip Impact at 55° Angle</td>
<td>Qasim H. Shah, Hasan M. Abid, Adib B. Rosli</td>
</tr>
<tr>
<td>16</td>
<td>Simulation Results of Pipe Whip Impact at 90° Angle</td>
<td>Qasim H. Shah, Hasan M. Abid, Adib B. Rosli</td>
</tr>
<tr>
<td>17</td>
<td>Failure Mechanism of PC Armor Plates with PMMA Sacrificial Layer Subjected to Impact</td>
<td>Qasim H. Shah, Hasan M. Abid, Adib B. Rosli</td>
</tr>
<tr>
<td>18</td>
<td>Damage of Polycarbonate Armor Plate Subjected to Impact</td>
<td>Qasim H. Shah, Hasan M. Abid, Adib B. Rosli</td>
</tr>
<tr>
<td>19</td>
<td>Finite Element to Predict Damage of a Polycarbonate Armor Plate Subjected to Impact</td>
<td>Qasim H. Shah, Hasan M. Abid, Adib B. Rosli</td>
</tr>
<tr>
<td>21</td>
<td>Damage Assessment of Liquid Filled Container Subjected to Free Fall on Rigid Steel Plate</td>
<td>Qasim H. Shah, Hasan M. Abid, Adib B. Rosli</td>
</tr>
<tr>
<td>23</td>
<td>Numerical Assessment of Liquid Filled Container Subjected to Free Fall on Rigid Steel Plate</td>
<td>Qasim H. Shah, Hasan M. Abid, Adib B. Rosli</td>
</tr>
</tbody>
</table>

Section 3 Design and Manufacturing

24	Overview of the Powder Metallurgy Process	Meflah Hrairi, Asmu'i Hussin, Fadzly Mohamad Ravi
25	Mechanical Properties of Sintered Aluminum Alloy Compacts	Meflah Hrairi, Fadzly Mohamad Ravi
26	Numerical Simulation of Green Compacts	Meflah Hrairi, Asmu'i Hussin
27	Experimental Studies of Dieless Forming	Meflah Hrairi, Salifil Mazwan Nawi
28	Study of Spot Welding Process	Meflah Hrairi, Fatimah Jamil
29	General Framework for Inverse Identification of Consecutive Parameters	
Section 4 Liquid Sloshing

35 Liquid Sloshing .. 215
Qasim H. Shah, Hasam M. Abd, Adib B. Rosli

36 Experimental Study of Liquid Slosh Dynamics in a Half Filled Cylindrical Tank 220
Qasim H. Shah, Hasam M. Abd, Adib B. Rosli

37 Experimental Results of Liquid Slosh in a Cylindrical Tank with Different Fill Levels 226
Qasim H. Shah, Hasam M. Abd, Adib B. Rosli

38 Simulation Model of 3D Liquid Slosh in a Partially Filled Cylindrical Tank 233
Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

39 Simulation Results of Liquid Slosh in a Partially Filled Cylindrical Tank 238
Qasim H. Shah, Hasam M. Abd, Adib B. Rosli

40 Numerical and Experimental Results of Liquid Slosh in a Partially Filled Cylindrical Tank 242
Qasim H. Shah, Hasam M. Abid, Adib B. Rosli

Index ... 247
EXPERIMENTAL RESULTS OF LIQUID SLOSH IN A CYLINDRICAL TANK WITH DIFFERENT FILL LEVELS

Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

1. INTRODUCTION

The fundamental properties of slosh could be effectively investigated through laboratory experiments under controlled conditions. Such experiments can provide considerable insight into the fluid slosh and associated forces and moments. The majority of the experimental investigations on the fluid slosh have been conducted in model tanks which are small in size compared to the full scale tanks of cross-section area in the order of 3.5 m2. The cross-sectional areas of the model tanks employed in the reported studies were in the order of 0.2 m2 [1-3]. Since the similarity of sloshing fluid flows is very complex, the slosh behavior would be expected to differ for different tank sizes. Moreover, some of the reported slosh studies were limited to measurements of hydrodynamic pressure at given points or only one component of the slosh forces. The stability of a road tank vehicle, however, is strongly dependent on the resultant slosh forces and moments arising in all the translational and rotational axes.

2. RESULTS

2.1 Maximum values of strain gages

The complete graph of strain results versus time frame for one-by-four, half-filled, three-by-four and fully-filled with water are obtained from the experiment as follow,