ADVANCED TOPICS IN MECHANICAL BEHAVIOR OF MATERIALS

Edited by

Meftah Hrairi

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Contents

Preface ... X
Acknowledgments .. xii
Editor .. xiv
Contributors .. xvi

Section 1 Buckling

1 Cylindrical Shell Buckling Under Axial Compression Load 3
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

2 Experimental Setup of Empty and Water Filled Cylindrical Shell Buckling 8
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

3 Experimental Results of Empty and Water Filled Cylindrical Shell Buckling 13
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

4 Experimental Results of Empty and Water Filled Cylindrical Shell Buckling for 50mm Stroke 18
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

5 Experimental Results of Empty and Water Filled Cylindrical Shell Buckling for 60mm Stroke 24
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

6 Simulation Setup of Empty and Water Filled Cylindrical Shell Buckling 30
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

7 Simulation Results of Empty and Water Filled Cylindrical Shell Buckling 35
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

8 Experimental and Simulation Results of Cylindrical Shell Buckling 41
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

9 Buckling and Crush Analysis of Light Weight Structure 48
 Kassim A. Abdullah and Wan Nur Hidayah Wan Sulaiman

10 Analysis of Lightweight Structural Tubes for Crashworthy Car Body 54
 Kassim A. Abdullah and Zahra Roslan

Section 2 Impact

11 Pipe Whip Impact .. 61
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

12 Experimental Setup of Pipe Whip Impact .. 66
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli
13 Experimental Results of Pipe Whip Impact ... 71
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

14 Simulation Setup of Pipe Whip Impact ... 77
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

15 Simulation Results of Pipe Whip Impact at 55° Angle .. 82
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

16 Simulation Results of Pipe Whip Impact at 90° Angle ... 87
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

17 Failure Mechanism of PC Armor Plates with PMMA Sacrificial Layer Subjected to Impact 93
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

18 Damage of Polycarbonate Armor Plate Subjected to Impact .. 106
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

19 Finite Element to Predict Damage of a Polycarbonate Armor Plate Subjected to Impact 112
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

20 Energy Absorbing Capability of Materials Subjected to Impact Under Gravity Loading 120
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

21 Damage Assessment of Liquid Filled Container Subjected to Free Fall on Rigid Steel Plate 127
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

22 Numerical Analysis of Materials Energy Absorbing Capability Under Gravity Loading Impact .. 134
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

23 Numerical Assessment of Liquid Filled Container Subjected to Free Fall on Rigid Steel Plate 141
 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

Section 3 Design and Manufacturing

24 Overview of the Powder Metallurgy Process .. 151
 Meftah Hrairi, Asmu'i Hussin, Fadzly Mohamad Ravi

25 Mechanical Properties of Sintered Aluminum Alloy Compacts .. 156
 Meftah Hrairi, Fadzly Mohamad Ravi

26 Numerical Simulation of Green Compacts ... 161
 Meftah Hrairi, Asmu'i Hussin

27 Experimental Studies of Dieless Forming ... 167
 Meftah Hrairi, Saifid Mazwan Nawi

28 Study of Spot Welding Process .. 172
 Meftah Hrairi, Fatimah Jamil

29 General Framework for Inverse Identification of Consecutive Parameters 177
Section 4 Liquid Sloshing

35 Liquid Sloshing ... 215
 Qasim H. Shah, Hasn M. Abid, Adib B. Rosli

36 Experimental Study of Liquid Slosh Dynamics in a Half Filled Cylindrical Tank 220
 Qasim H. Shah, Hasn M. Abid, Adib B. Rosli

37 Experimental Results of Liquid Slosh in a Cylindrical Tank with Different Fill Levels 226
 Qasim H. Shah, Hasn M. Abid, Adib B. Rosli

38 Simulation Model of 3D Liquid Slosh in a Partially Filled Cylindrical Tank 233
 Qasim H. Shah, Hasn M. Abid, Adib B. Rosli

39 Simulation Results of Liquid Slosh in a Partially Filled Cylindrical Tank 238
 Qasim H. Shah, Hasn M. Abid, Adib B. Rosli

40 Numerical and Experimental Results of Liquid Slosh in a Partially Filled Cylindrical Tank 242
 Qasim H. Shah, Hasn M. Abid, Adib B. Rosli

Index ... 247
EXPERIMENTAL STUDY OF LIQUID SLOSH DYNAMICS IN A HALF FILLED CYLINDRICAL TANK

Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

1. INTRODUCTION

Liquid in an arbitrary shaped container under external excitations, results in surface and bulk turbulence. The nature of such turbulence is quite complex due to several effects such as sloshing, pressure gradient etc. Amongst these, sloshing makes the liquid container more vulnerable to structural damages. Depending on the type of disturbance and container shape, the free liquid surface may experience different types of motion including simple planar, non-planar, rotational, irregular beating, symmetric, asymmetric, quasi-periodic and chaotic. However, the amplitude of slosh depends on the amplitude and frequency of the tank motion, liquid-fill depth, liquid properties and tank geometry. The resonance in the case of horizontal excitation occurs when the external forcing frequency is close to the natural frequency of the liquid. Hence liquid sloshing is a practical problem with regard to the safety of transportation systems, such as oil tankers on highways, liquid tank cars on railroads, oceangoing vessels with liquid cargo, propellant tank used in satellites and other spacecraft vehicles, and several others.

2. EXPERIMENTAL SETUP

Liquid slosh inside a partially filled cylindrical tank is experimentally investigated in a test tank in the laboratory. The measurements were performed to evaluate fundamental slosh frequencies, and dynamic slosh forces and moments under the influence of harmonic lateral and longitudinal acceleration fields. The measured data are analyzed to build an understanding of the conditions of magnitudes of slosh forces and moments developed and the role of primary influencing factors. The experimental study aims at capturing the fluid motion before and after impact through visualization. Several design concepts were