Contents

Preface .......................................................................................................................... X
Acknowledgments .......................................................................................................... xii
Editor ............................................................................................................................. xiv
Contributors .................................................................................................................. xvi

Section 1 Buckling

1 Cylindrical Shell Buckling Under Axial Compression Load ........................................ 3
   Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

2 Experimental Setup of Empty and Water Filled Cylindrical Shell Buckling ............... 8
   Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

3 Experimental Results of Empty and Water Filled Cylindrical Shell Buckling ............ 13
   Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

4 Experimental Results of Empty and Water Filled Cylindrical Shell Buckling for 50mm Stroke .... 18
   Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

5 Experimental Results of Empty and Water Filled Cylindrical Shell Buckling for 60mm Stroke .... 24
   Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

6 Simulation Setup of Empty and Water Filled Cylindrical Shell Buckling .................. 30
   Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

7 Simulation Results of Empty and Water Filled Cylindrical Shell Buckling .................. 35
   Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

8 Experimental and Simulation Results of Cylindrical Shell Buckling .......................... 41
   Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

9 Buckling and Crush Analysis of Light Weight Structure ........................................... 48
   Kassim A. Abdullah and Wan Nur Hidayah Wan Sulaiman

10 Analysis of Lightweight Structural Tubes for Crashworthy Car Body ....................... 54
    Kassim A. Abdullah and Zahira Roslan

Section 2 Impact

11 Pipe Whip Impact ...................................................................................................... 61
   Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

12 Experimental Setup of Pipe Whip Impact .................................................................. 66
   Qasim H. Shah, Hasan M. Abid, Adib B. Rosli
Experimental Results of Pipe Whip Impact ............................................................... 71
Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

Simulation Setup of Pipe Whip Impact .................................................................. 77
Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

Simulation Results of Pipe Whip Impact at 55° Angle ........................................ 82
Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

Simulation Results of Pipe Whip Impact at 90° Angle ........................................ 87
Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

Failure Mechanism of PC Armor Plates with PMMA Sacrificial Layer Subjected to Impact .......... 93
Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

Damage of Polycarbonate Armor Plate Subjected to Impact .................................. 106
Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

Finite Element to Predict Damage of a Polycarbonate Armor Plate Subjected to Impact .......... 112
Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

Energy Absorbing Capability of Materials Subjected to Impact Under Gravity Loading .......... 120
Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

Damage Assessment of Liquid Filled Container Subjected to Free Fall on Rigid Steel Plate .......... 127
Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

Numerical Analysis of Materials Energy Absorbing Capability Under Gravity Loading Impact ........................................ 134
Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

Numerical Assessment of Liquid Filled Container Subjected to Free Fall on Rigid Steel Plate .......... 141
Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

Section 3 Design and Manufacturing

Overview of the Powder Metallurgy Process .................................................................. 151
Mefiah Hrairi, Asmu 'i Hussin, Fadzly Mohamad Ravi

Mechanical Properties of Sintered Aluminum Alloy Compacts .................................. 156
Mefiah Hrairi, Fadzly Mohamad Ravi

Numerical Simulation of Green Compacts .................................................................. 161
Mefiah Hrairi, Asmu 'i Hussin

Experimental Studies of Dieless Forming .................................................................. 167
Mefiah Hrairi, Saifid Mazwan Nawi

Study of Spot Welding Process ................................................................................. 172
Mefiah Hrairi, Fatimah Jamil

General Framework for Inverse Identification of Consecutive Parameters ....................... 177
<table>
<thead>
<tr>
<th>Section 4 Liquid Sloshing</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td>37</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>39</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>Index</td>
</tr>
</tbody>
</table>
SIMULATION RESULTS OF PIPE WHIP IMPACT AT 90° ANGLE

Qasim H. Shah, Hasan M. Abid, Adib B. Rosli

1. INTRODUCTION

The safety of pipe whip is related issue for nuclear power and chemical plants, where pipes are often used to transport fluids at high pressure and high temperature. Simulation analysis for empty pipe and liquid filled pipe are conducted in this study. The model was made of simple pipe whip system which enables the missile pipe to hit the target pipe at an angle of 90° angle. The simulation setup is done by LS-DYNA which is highly nonlinear transient dynamic finite element analysis using explicit time integration. The results show the deformation occurred in the pipe whip at different degrees of impacts.

2. LS-DYANA SIMULATION RESULTS

2.1 Simulation Results for Empty Pipe Whip Impact at 90° Angle

The following figures shows the deformation occurred in the empty pipe whip as a result of impact of 90° Angle. The figures present the final shape of the pipe, reduced diameter, dent width, pressure, Von Mises Stress, and displacement as follow,