ADVANCED TOPICS IN MECHANICAL BEHAVIOR OF MATERIALS

Edited by

Meftah Hrairi

IIUM PRESS INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

ADVANCED TOPICS IN MECHANICAL BEHAVIOR OF MATERIALS

Edited by

Meftah Hrairi

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

ISBN: 978-967-418-174-1

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by : IIUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan

Prefa	CeX
Ackno	owledgmentsxii
Editor	rXiv
Contr	ibutorsxvi
Secti	on 1 Buckling
1	Cylindrical Shell Buckling Under Axial Compression Load
2	Experimental Setup of Empty and Water Filled Cylindrical Shell Buckling
3	Experimental Results of Empty and Water Filled Cylindrical Shell Buckling
4	Experimental Results of Empty and Water Filled Cylindrical Shell Buckling for 50mm Stroke 18 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli
5	Experimental Results of Empty and Water Filled Cylindrical Shell Buckling for 60mm Stroke 24 <i>Qasim H. Shah, Hasan M. Abid, Adib B. Rosli</i>
6	Simulation Setup of Empty and Water Filled Cylindrical Shell Buckling
7	Simulation Results of Empty and Water Filled Cylindrical Shell Buckling
8	Experimental and Simulation Results of Cylindrical Shell Buckling
9	Buckling and Crush Analysis of Light Weight Structure
10	Analysis of Lightweight Structural Tubes for Crashworthy Car Body
Secti	on 2 Impact
11	Pipe Whip Impact
12	Experimental Setup of Pipe Whip Impact

13	Experimental Results of Pipe Whip Impact
14	Simulation Setup of Pipe Whip Impact
15	Simulation Results of Pipe Whip Impact at 55° Angle
16	Simulation Results of Pipe Whip Impact at 90° Angle
17	Failure Mechanism of PC Armor Plates with PMMA Sacrificial Layer Subjected to Impact93 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli
18	Damage of Polycarbonate Armor Plate Subjected to Impact 106 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli
19	Finite Element to Predict Damage of a Polycarbonate Armor Plate Subjected to Impact
20	Energy Absorbing Capability of Materials Subjected to Impact Under Gravity Loading
21	Damage Assessment of Liquid Filled Container Subjected to Free Fall on Rigid Steel Plate
22	Numerical Analysis of Materials Energy Absorbing Capability Under Gravity Loading Impact 134 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli
23	Numerical Assessment of Liquid Filled Container Subjected to Free Fall on Rigid Steel Plate 141 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli
Secti	ion 3 Design and Manufacturing
24	Overview of the Powder Metallurgy Process
25	Mechanical Properties of Sintered Aluminum Alloy Compacts
26	Numerical Simulation of Green Compacts161 Meftah Hrairi, Asmu'i Hussin
27	Experimental Studies of Dieless Forming
28	Study of Spot Welding Process
29	General Framework for Inverse Identification of Consecutive Parameters

Mejtah Hrairi

30	Inverse Parameter Identification of Elastic and Inelastic Constitutive Material Models 18 <i>Meftah Hrairi</i>	33
31	Enhancing Magnetic Particle Testing of Automotive Parts	39
32	Design and Fabrication of the Testing Model of the Vehicle Structure Test System	96
33	Design Analysis of Laminated Composite Ladder Chassis Frame of Light Truck	02
34 Kaharu	Design and Development of Driving System for Disabled Driver	08
Sectio	on 4 Liquid Sloshing	
35	Liquid Sloshing	15
36	Experimental Study of Liquid Slosh Dynamics in a Half Filled Cylindrical Tank	20
37	Experimental Results of Liquid Slosh in a Cylindrical Tank with Different Fill Levels	26
38	Simulation Model of 3D Liquid Slosh in a Partially Filled Cylindrical Tank	33
39	Simulation Results of Liquid Slosh in a Partially Filled Cylindrical Tank	38
40	Numerical and Experimental Results of Liquid Slosh in a Partially Filled Cylindrical Tank	42
Index.		47

16

SIMULATION RESULTS OF PIPE WHIP IMPACT AT 90° ANGLE

Qasim H. Shah, Hasan M.Abid, Adib B. Rosli

1. INTRODUCTION

The safety of pipe whip is related issue for nuclear power and chemical plants, where pipes are often used to transport fluids at high pressure and high temperature. Simulation analysis for empty pipe and liquid filled pipe are conducted in this study. The model was made of simple pipe whip system which enables the missile pipe to hit the target pipe at an angle of 90° angle. The simulation setup is done by LS-DYNA which is highly nonlinear transient dynamic finite element analysis using explicit time integration. The results show the deformation occurred in the pipe whip at different degrees of impacts.

2. LS-DYANA SIMULATION RESULTS

2.1 Simulation Results for Empty Pipe Whip Impact at 90° Angle

The following figures shows the deformation occurred in the empty pipe whip as a result of impact of 90° Angle. The figures present the final shape of the pipe, reduced diameter, dent width, pressure, Von Mises Stress, and displacement as follow,

Figure 1 Reduced diameter of the pipe