The Living Fossil (Horseshoe crab)

Kamaruzzaman Yunus
Akbar John
Ahmed Jalal Khan Chowdhury
Zaleha Kassim

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
The Living Fossil
(Horseshoe crab)

Editors,
Kamaruzzaman Yunus
Akbar John
Ahmed Jalal Khan Chowdhury
Zaleha Kassim
Table of Contents

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Titles</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Global distribution and Taxonomy of extant horseshoe crabs</td>
<td>(5410/18557)</td>
</tr>
<tr>
<td>2.</td>
<td>Limiting factors on the global distribution of horseshoe crabs</td>
<td>(5410/18558)</td>
</tr>
<tr>
<td>3.</td>
<td>Site selection and nesting behaviour of horseshoe crabs with special reference to Limulus polyphemus</td>
<td>(3575/18560)</td>
</tr>
<tr>
<td>4.</td>
<td>Distribution of horseshoe crabs at their nesting grounds, East coast of Peninsular Malaysia</td>
<td>(5410/18560)</td>
</tr>
<tr>
<td>5.</td>
<td>Hydrology of horseshoe crab nesting ground at Pahang coast – Part 1</td>
<td>(3575/18563)</td>
</tr>
<tr>
<td>6.</td>
<td>Hydrology of horseshoe crab nesting ground at Pahang coast – Part 2</td>
<td>(3575/18561)</td>
</tr>
<tr>
<td>7.</td>
<td>Physicochemical parameters relationship at the horseshoe crab nesting grounds of Pahang coast, Malaysia</td>
<td>(5410/18567)</td>
</tr>
<tr>
<td>8.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station, Pahang, Malaysia – Part 1</td>
<td>(3575/18568)</td>
</tr>
<tr>
<td>9.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station, Pahang, Malaysia – Part 2</td>
<td>(3575/18570)</td>
</tr>
<tr>
<td>10.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station, Pahang, Malaysia – Part 1</td>
<td>(5410/18571)</td>
</tr>
<tr>
<td>11.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station, Pahang, Malaysia – Part 2</td>
<td>(3575/18573)</td>
</tr>
<tr>
<td>12.</td>
<td>Influence of physicochemical parameters on the macrobenthic diversity and abundance in horseshoe crab nesting grounds, East coast of Peninsular Malaysia</td>
<td>(5410/18574)</td>
</tr>
<tr>
<td>13.</td>
<td>In-vitro study on the effect of salinity on the hatching success of Malaysian Horseshoe crab eggs</td>
<td>(3575/18575)</td>
</tr>
<tr>
<td>14.</td>
<td>Effects of salinity on the early growth of Tachylepis gigas larvae</td>
<td>(3575/18577)</td>
</tr>
</tbody>
</table>
15. Sediment characteristics of horseshoe crabs nesting ground at Balok station.
 Pahang, Malaysia .. (5410/18019) 155

16. Sediment Profiling of the Estuarine Nesting Ground of Horseshoe Crabs at
 East Peninsular Malaysia ... (3575/19589) 165

17. Bioaccumulation of some essential metal concentration in Malaysian
 horseshoe crabs (Tachypleus gigas) (5410/13587) 175

18. Cu and Cd Bioaccumulation in Malaysian Horseshoe Crab (5410/18395) 183

19. Metal concentration in horseshoe crab nesting ground along
 Pahang coast, Malaysia .. (5410/18586) 193

20. Bionomics of Malaysian horseshoe crabs Tachypleus gigas (5410/13917) 203
 (5410/19731)

21. Feeding Ecology of Mangrove horseshoe crab Carcinoscorpius rotundicauda 213

22. Emerging interest on DNA barcoding technology and its application for
 high-tech biodiversity studies using COI gene as a reference sequence (3575/19716) 225

23. Can DNA barcode accurately delineate living fossil (Horseshoe crab)
 and its different developmental stages? (5410/19715) 237

24. Revision on the molecular phylogeny of horseshoe crabs – Part 1 (5410/19717) 251

25. Revision on the molecular phylogeny of horseshoe crabs – Part 2 (5410/19720) 267

26. Genetic Diversity of Tachypleus gigas Population from West coast of
 peninsular Malaysia .. (3575/1927) 275

27. Does continental drift influence in the genetic variability among the
 horseshoe crab population? .. (3575/19727) 287
 (3575/19731)

28. Evolution of horseshoe crabs – palaeontological and Molecular viewpoint 297

29. Factors involving in the clot formation of horseshoe crab blood (5410/19711) 307

30. Methods for bacterial endotoxin quantification in reference to
 horseshoe crab blood studies ... (5410/19740) 317
 (5410/19744)

31. ENDO SENSOR (TAL) production from Malaysian Horseshoe crab blood 325

32. Characterization of Tachypleus Amebocyte Lysate (TAL) (3575/19709) 333
33. Environmental and Pharmaceutical applications of Amebocytes Lysate (LAL/TAL) from Horseshoe crabs ... (3410/1975) 343
34. *Tachypleus gigas* mortality due biomedical bleeding process ... (3575/1975) 351
35. Conservation measures on horseshoe crab population – A global view ... (3510/1975) 359
Glossary ... 369
CHAPTER – 29

Factors involving in the clot formation of horseshoe crab blood

1Akbar John, B., 1Kamaruzzaman, B.Y., 3Armstrong, P. 1Jalal, K.C.A., 2Zaleha, K
1Institute of Oceanography and Maritime studies (INOCBM), Kulliyyah of Science. International
Islamic University Malaysia. Jalan Sultan Ahmad Shah.
Bandar Indera Mahkota. 25200, Kuantan Pahang, Malaysia
2Institute of Tropical Aquaculture, University Malaysia Terengganu. 21030 Kuala Terengganu.
Terengganu, Malaysia.
3Department of Molecular and Cell Biology, UC Davis. Davis USA

Abstract
The blood of the horseshoe crab has been an area of interest because of its blue colour, which is
due to a copper based oxygen acceptor (hemocyanin) rather than the iron based receptor
(hemoglobin) seen in mammals and other animals. Although the respiratory function of
hemocyanin is similar to that of hemoglobin, there are a significant number of differences in its
molecular structure and mechanism. When horseshoe crab hemolymph comes into contact with
Gram-negative bacteria or Lipopolysaccharide (LPS), the amebocytes begin to degranulate, and
hemolymph coagulation is initiated by the granule components. There are number of factors
involving in accomplishing the formation of clot in horseshoe crabs circulatory system. This
paper was attempted to address the importance and role of various factors involving in the clot
formation of horseshoe crab blood during bacterial endotoxin invation.

Key words: clotting factors, horseshoe crabs, hemocyanin, lipopolysaccharide, bacterial
endotoxin.

Introduction
The scientific exploration on horseshoe crab blood was started due to the limitation in the
detection of bacterial pyrogenicity using rabbit as a test animal. For most of the 20th century, the
Rabbit Pyrogen Test (RPT) was the standard method for testing the quality of injectable drugs,