The Living Fossil (Horseshoe crab)

Kamaruzzaman Yunus
Akbar John
Ahmed Jalal Khan Chowdhury
Zaleha Kassim
The Living Fossil
(Horseshoe crab)

Editors,
Kamaruzzaman Yunus
Akbar John
Ahmed Jalal Khan Chowdhury
Zaleha Kassim
Table of Contents

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Titles</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Global distribution and Taxonomy of extant horseshoe crabs</td>
<td>(5410/18557) 1</td>
</tr>
<tr>
<td>2.</td>
<td>Limiting factors on the global distribution of horseshoe crabs</td>
<td>(5410/18558) 11</td>
</tr>
<tr>
<td>3.</td>
<td>Site selection and nesting behaviour of horseshoe crabs with special reference to Limulus polyphemus</td>
<td>(3575/18560) 19</td>
</tr>
<tr>
<td>4.</td>
<td>Distribution of horseshoe crabs at their nesting grounds, East coast of Peninsular Malaysia</td>
<td>(5410/18560) 27</td>
</tr>
<tr>
<td>5.</td>
<td>Hydrology of horseshoe crab nesting ground at Pahang coast – Part 1</td>
<td>(3575/18563) 35</td>
</tr>
<tr>
<td>6.</td>
<td>Hydrology of horseshoe crab nesting ground at Pahang coast – Part 2</td>
<td>(3575/18564) 47</td>
</tr>
<tr>
<td>7.</td>
<td>Physicochemical parameters relationship at the horseshoe crab nesting grounds of Pahang coast, Malaysia</td>
<td>(5410/18567) 57</td>
</tr>
<tr>
<td>8.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station, Pahang, Malaysia – Part 1</td>
<td>(3575/18568) 69</td>
</tr>
<tr>
<td>9.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station, Pahang, Malaysia – Part 2</td>
<td>(3575/18570) 83</td>
</tr>
<tr>
<td>10.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station, Pahang, Malaysia – Part 1</td>
<td>(5410/18571) 95</td>
</tr>
<tr>
<td>11.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station, Pahang, Malaysia – Part 2</td>
<td>(3575/18573) 109</td>
</tr>
<tr>
<td>12.</td>
<td>Influence of physicochemical parameters on the macrobenthic diversity and abundance in horseshoe crab nesting grounds, East coast of Peninsular Malaysia</td>
<td>(5410/18574) 127</td>
</tr>
<tr>
<td>13.</td>
<td>In-vitro study on the effect of salinity on the hatching success of Malaysian Horseshoe crab eggs</td>
<td>(3575/18575) 137</td>
</tr>
<tr>
<td>14.</td>
<td>Effects of salinity on the early growth of Tachypleus gigas larvae - An In-vitro study</td>
<td>(3575/18577) 147</td>
</tr>
</tbody>
</table>
15. Sediment characteristics of horseshoe crabs nesting ground at Balok station, Pahang, Malaysia ...(5410/19719) .. 155

16. Sediment Profiling of the Estuarine Nesting Ground of Horseshoe Crabs at East Peninsular Malaysia .. (3575/19780) ... 165

17. Bioaccumulation of some essential metal concentration in Malaysian horseshoe crabs (Tachypleus gigas) ...(5410/19558) .. 175

18. Cu and Cd Bioaccumulation in Malaysian Horseshoe Crab ... (5410/19565) ... 183

19. Metal concentration in horseshoe crab nesting ground along Pahang coast, Malaysia ... (5410/19566) ... 193

20. Bionomics of Malaysian horseshoe crabs Tachypleus gigas ... (5410/19772) .. 203

21. Feeding Ecology of Mangrove horseshoe crab Carcinoscorpius rotundicauda .. (5410/19773) .. 213

22. Emerging interest on DNA barcoding technology and its application for high-tech biodiversity studies using COI gene as a reference sequence (3575/19773) .. 225

23. Can DNA barcode accurately delineate living fossil (Horseshoe crab) and its different developmental stages? .. (5410/19715) .. 237

24. Revision on the molecular phylogeny of horseshoe crabs – Part 1 ... (5410/19711) .. 251

25. Revision on the molecular phylogeny of horseshoe crabs – Part 2 ... (5410/19720) .. 267

26. Genetic Diversity of Tachypleus gigas Population from West coast of peninsular Malaysia ... (3575/19721) .. 275

27. Does continental drift influence in the genetic variability among the horseshoe crab population? ... (3575/19727) .. 287

28. Evolution of horseshoe crabs – paleontological and Molecular viewpoint .. (3575/19731) .. 297

29. Factors involving in the clot formation of horseshoe crab blood ... (5410/19711) .. 307

30. Methods for bacterial endotoxin quantification in reference to horseshoe crab blood studies .. (5410/19740) .. 317

31. ENDO SENSOR (TAL) production from Malaysian Horseshoe crab blood ... (5410/19744) .. 325

32. Characterization of Tachypleus Amebocyte Lysate (TAL) ... (3575/19729) .. 333
33. Environmental and Pharmaceutical applications of Amebocytes Lysate (LAL/TAL) from Horseshoe crabs .. (5410/1975) 343

34. Tachypleus gigas mortality due biomedical bleeding process ... (3575/1975) 351

35. Conservation measures on horseshoe crab population – A global view ... (5410/1975) 359

Glossary ... 369
CHAPTER – 28

Evolution of horseshoe crabs – paleontological and Molecular viewpoint

1Rudkin, D.M., 2Young, G.A., 3Akbar John, B., 3Jalal, K.C.A.

1Department of Natural History-Paleobiology, Royal Ontario Museum, Toronto, ON, Canada
2The Manitoba Museum, Winnipeg, MB, Canada
3Institute of Oceanography and Maritime studies (INOCEM), Kulliyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan Pahang, Malaysia

Abstract

Horseshoe crabs are unique group of animals remarkably retaining their genetic makeup virtually unchanged for the past 150 million years. The first fossil record of the basic xiphusurid horseshoe crab body plan has been extended back to the Late Ordovician Period, about 445 million years ago. Horseshoe crab body fossils are exceptionally rare and are found mostly in shallow coastal and marginal marine Konervat-Lagerstätten deposits. Their irregular occurrences document their diversity during post-Cambrian period with a morphological and taxonomic peak in the Late Paleozoic Era. They have undergone minor secondary radiation during the Triassic Period. Overall, the rarity of fossil xiphusurids reflects both taphonomic biases inherent in the unusual conditions required for preservation of their non-biomineralized exoskeletons and complex ecological factors related to a long-term association with shallow marginal aquatic habitats. Recent studies on their molecular phylogeny have speculated that the evolution of horseshoe crab might probably from ancient aquatic insects.

Key words: horseshoe crabs, evolution, xiphusurids, living fossil, fossil records.

Introduction

Horseshoe crabs are one of the remarkable group of animal attracted the attention of evolutionary biologists and paleontologists to discover their origin and adaptability over millions of years. Their genetic makeup has virtually unchanged since Ordovician Period (445 million years ago)