The Living Fossil (Horseshoe crab)

Kamaruzzaman Yunus
Akbar John
Ahmed Jalal Khan Chowdhury
Zaleha Kassim

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
The Living Fossil
(Horseshoe crab)

Editors,
Kamaruzzaman Yunus
Akbar John
Ahmed Jalal Khan Chowdhury
Zaleha Kassim

IUM Press
Table of Contents

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Titles</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Global distribution and Taxonomy of extant horseshoe crabs</td>
<td>(5410/18557) 1</td>
</tr>
<tr>
<td>2.</td>
<td>Limiting factors on the global distribution of horseshoe crabs</td>
<td>(5410/18558) 11</td>
</tr>
<tr>
<td>3.</td>
<td>Site selection and nesting behaviour of horseshoe crabs with special reference to Limulus polyphemus</td>
<td>(3575/18560) 19</td>
</tr>
<tr>
<td>4.</td>
<td>Distribution of horseshoe crabs at their nesting grounds, East coast of Peninsular Malaysia</td>
<td>(5410/18560) 27</td>
</tr>
<tr>
<td>5.</td>
<td>Hydrology of horseshoe crab nesting ground at Pahang coast – Part 1</td>
<td>(3575/18563) 35</td>
</tr>
<tr>
<td>6.</td>
<td>Hydrology of horseshoe crab nesting ground at Pahang coast – Part 2</td>
<td>(3575/18564) 47</td>
</tr>
<tr>
<td>7.</td>
<td>Physicochemical parameters relationship at the horseshoe crab nesting grounds of Pahang coast, Malaysia</td>
<td>(5410/18567) 57</td>
</tr>
<tr>
<td>8.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station, Pahang, Malaysia – Part 1</td>
<td>(3575/18568) 69</td>
</tr>
<tr>
<td>9.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station, Pahang, Malaysia – Part 2</td>
<td>(3575/18570) 83</td>
</tr>
<tr>
<td>10.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station, Pahang, Malaysia – Part 1</td>
<td>(5410/18571) 95</td>
</tr>
<tr>
<td>11.</td>
<td>Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station, Pahang, Malaysia – Part 2</td>
<td>(3575/18573) 109</td>
</tr>
<tr>
<td>12.</td>
<td>Influence of physicochemical parameters on the macrobenthic diversity and abundance in horseshoe crab nesting grounds, East coast of Peninsular Malaysia</td>
<td>(5410/18574)</td>
</tr>
<tr>
<td>13.</td>
<td>In-vitro study on the effect of salinity on the hatching success of Malaysian Horseshoe crab eggs</td>
<td>(3575/18575) 137</td>
</tr>
<tr>
<td>14.</td>
<td>Effects of salinity on the early growth of Tachypleus gigas larvae - An In-vitro study</td>
<td>(3575/18577) 147</td>
</tr>
</tbody>
</table>
15. Sediment characteristics of horseshoe crabs nesting ground at Balok station, Pahang, Malaysia ... (5410/18519) 155
16. Sediment Profiling of the Estuarine Nesting Ground of Horseshoe Crabs at East Peninsular Malaysia ... (3575/19749) 165
17. Bioaccumulation of some essential metal concentration in Malaysian horseshoe crabs (Tachylepus gigas) .. (5410/19756) 175
18. Cu and Cd Bioaccumulation in Malaysian Horseshoe Crab (5410/19760) 183
19. Metal concentration in horseshoe crab nesting ground along Pahang coast, Malaysia ... (5410/19766) 193
20. Biomomics of Malaysian horseshoe crabs Tachylepus gigas (5410/19787) 203
21. Feeding Ecology of Mangrove horseshoe crab Carcinoscorpius rohunicauda (5410/19797) 213
22. Emerging interest on DNA barcoding technology and its application for high-tech biodiversity studies using COI gene as a reference sequence (3575/19725) 225
23. Can DNA barcode accurately delineate living fossil (Horseshoe crab) and its different developmental stages? (5410/19737) 237
24. Revision on the molecular phylogeny of horseshoe crabs – Part 1 (5410/19717) 251
25. Revision on the molecular phylogeny of horseshoe crabs – Part 2 (5410/19720) 267
26. Genetic Diversity of Tachylepus gigas Population from West coast of peninsular Malaysia ... (3575/19727) 275
27. Does continental drift influence in the genetic variability among the horseshoe crab population? .. (3575/19727) 287
(3575/19731)
28. Evolution of horseshoe crabs – paleontological and Molecular viewpoint ... (5410/19731) 297
29. Factors involving in the clot formation of horseshoe crab blood (5410/19711) 307
30. Methods for bacterial endotoxin quantification in reference to horseshoe crab blood studies ... (5410/19740) 317
(5410/19744)
31. ENDO SENSOR (TAL) production from Malaysian Horseshoe crab blood .. (3575/19749) 325
32. Characterization of Tachylepus Amebocyte Lysate (TAL) ... (3575/19759) 333
33. Environmental and Pharmaceutical applications of Amebocytes Lysate (LAL/TAL) from Horseshoe crabs .. (5410/19791) 343

34. Tachypleus gigas mortality due biomedical bleeding process ... (3575/19756) 351

35. Conservation measures on horseshoe crab population – A global view ... (5410/19759) 359

Glossary ... 369
CHAPTER – 24

Revision on the molecular phylogeny of horseshoe crabs – Part 1

Akbar John, B., Prasanna Kumar, Kamaruzzaman, B.Y., Jalal, K.C.A.

Institute of Oceanography and Maritime studies (INOCEM), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan Pahang, Malaysia

Centre of Advanced Studies in Marine Biology (CASMB), Annamalai University, Tamil Nadu, India

Abstract

Present study was aimed to reinvestigate the existing molecular phylogeny of cryptic horseshoe crabs using universal barcode gene (cytochrome oxidase subunit 1). Phylogenetic trees were constructed using Distance matrix method: NJ and UPGMA. Genetic distance (GD) data analysis revealed the distant genetic relatedness of American horseshoe crab (Limulus polyphemus) with Asian conspecifics. More interestingly, the monophyletic origin of Tachypleus gigas and Tachypleus tridentatus was noted in constructed phylogram which other molecular markers failed to address.

Key words: molecular phylogeny, genetic conservation, horseshoe crabs, COI gene.

Introduction

The little morphological differentiation among horseshoe crab lineages has resulted in substantial controversy concerning the phylogenetic relationship among the extant species of horseshoe crabs, especially among the three species in the Indo-Pacific region. Earlier studies suggest that the three species constitute a phylogenetically irresolvable trichotomy (Xia, 2000). For elucidating their phylogenetic relationships, two proteins, coagulogen and hemocyanin, have been investigated (Shishikura et al., 1982; Srimal et al., 1985). Miyazaki et al. (1989) first investigated tropomyosin which is one of the major structural proteins involved in many types of cells, to elucidate prevailing phylogenetic relationships among horseshoe crabs and his result suggested that L. polyphemus is phylogenetically differentiated far from the three Asian species.