The Living Fossil (Horseshoe crab)

Kamaruzzaman Yunus
Akbar John
Ahmed Jalal Khan Chowdhury
Zaleha Kassim

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
The Living Fossil
(Horseshoe crab)

Editors,
Kamaruzzaman Yunus
Akbar John
Ahmed Jalal Khan Chowdhury
Zaleha Kassim
Table of Contents

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Titles</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Global distribution and Taxonomy of extant horseshoe crabs</td>
<td>(54/10/18557)</td>
<td>1</td>
</tr>
<tr>
<td>2. Limiting factors on the global distribution of horseshoe crabs</td>
<td>(54/10/18558)</td>
<td>11</td>
</tr>
<tr>
<td>3. Site selection and nesting behaviour of horseshoe crabs with special reference to Limulus polyphemus</td>
<td>(3575/18560)</td>
<td>19</td>
</tr>
<tr>
<td>4. Distribution of horseshoe crabs at their nesting grounds, East coast of Peninsular Malaysia</td>
<td>(54/10/18560)</td>
<td>27</td>
</tr>
<tr>
<td>5. Hydrology of horseshoe crab nesting ground at Pahang coast – Part 1</td>
<td>(3575/18563)</td>
<td>35</td>
</tr>
<tr>
<td>6. Hydrology of horseshoe crab nesting ground at Pahang coast – Part 2</td>
<td>(3575/18564)</td>
<td>47</td>
</tr>
<tr>
<td>7. Physicochemical parameters relationship at the horseshoe crab nesting grounds of Pahang coast, Malaysia</td>
<td>(54/10/18567)</td>
<td>57</td>
</tr>
<tr>
<td>8. Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station, Pahang, Malaysia – Part 1</td>
<td>(3575/18568)</td>
<td>69</td>
</tr>
<tr>
<td>9. Macrobenthic diversity at the Horseshoe Crab nesting ground, Balok station, Pahang, Malaysia – Part 2</td>
<td>(3575/18570)</td>
<td>83</td>
</tr>
<tr>
<td>10. Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station, Pahang, Malaysia – Part 1</td>
<td>(54/10/18571)</td>
<td>95</td>
</tr>
<tr>
<td>11. Macrobenthic diversity at the Horseshoe Crab nesting ground, Pekan station, Pahang, Malaysia – Part 2</td>
<td>(3575/18573)</td>
<td>109</td>
</tr>
<tr>
<td>12. Influence of physicochemical parameters on the macrobenthic diversity and abundance in horseshoe crab nesting grounds, East coast of Peninsular Malaysia</td>
<td>(54/10/18574)</td>
<td></td>
</tr>
<tr>
<td>13. In-vitro study on the effect of salinity on the hatching success of Malaysian Horseshoe crab eggs</td>
<td>(3575/18575)</td>
<td>137</td>
</tr>
<tr>
<td>14. Effects of salinity on the early growth of Tachypleus gigas larvae - An In-vitro study</td>
<td>(3575/18577)</td>
<td>147</td>
</tr>
</tbody>
</table>
15. Sediment characteristics of horseshoe crabs nesting ground at Balok station, Pahang, Malaysia ... (5410/18519) 155

16. Sediment Profiling of the Estuarine Nesting Ground of Horseshoe Crabs at East Peninsular Malaysia ... (3575/19687) 165

17. Bioaccumulation of some essential metal concentration in Malaysian horseshoe crabs (Tachypleus gigas) ... (5410/18518) 175

18. Cu and Cd Bioaccumulation in Malaysian Horseshoe Crab (5410/18565) 183

19. Metal concentration in horseshoe crab nesting ground along Pahang coast, Malaysia ... (5410/18566) 193

20. Bionomics of Malaysian horseshoe crabs Tachypleus gigas (5410/19718) 203

21. Feeding Ecology of Mangrove horseshoe crab Carcinoscorpius roentaudicauda ... (5410/19717) 213

22. Emerging interest on DNA barcoding technology and its application for high-tech biodiversity studies using COI gene as a reference sequence (3575/19716) 225

23. Can DNA barcode accurately delineate living fossil (Horseshoe crab) and its different developmental stages? (5410/19715) 237

24. Revision on the molecular phylogeny of horseshoe crabs – Part 1 ... (5410/19717) 251

25. Revision on the molecular phylogeny of horseshoe crabs – Part 2 ... (5410/19720) 267

26. Genetic Diversity of Tachypleus gigas Population from West coast of peninsular Malaysia ... (3575/19721) 275

27. Does continental drift influence in the genetic variability among the horseshoe crab population? .. (3575/19727) 287

28. Evolution of horseshoe crabs – paleontological and Molecular viewpoint ... (3575/19731) 297

29. Factors involving in the clot formation of horseshoe crab blood ... (5410/19711) 307

30. Methods for bacterial endotoxin quantification in reference to horseshoe crab blood studies ... (5410/19740) 317

31. ENDO SENSOR (TAL) production from Malaysian Horseshoe crab blood ... (5410/19744) 325

32. Characterization of Tachypleus Amebocyte Lysate (TAL) ... (3575/19729) 333
33. Environmental and Pharmaceutical applications of Amebocytes Lysate (LAL/TAL) from Horseshoe crabs ... (5410/19751) 343

34. Tachypleus gigas mortality due biomedical bleeding process ... (3575/19756) 351

35. Conservation measures on horseshoe crab population – A global view ... (5410/19759) 359

Glossary ... 369
CHAPTER – 22

Emerging interest on DNA barcoding technology and its application for high-tech biodiversity studies using COI gene as a reference sequence

1Akbar John, B., 1Jalal, K.C.A. 2Rozihan, M.

2Department of Aquaculture. Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM. Serdang, Selangor, Malaysia.

Abstract

Our planet earth is enriched with innumerous array of species interacting in well defined order in their own niches that eventually helping in the maintaining the ecological structure of any community. Species level identification of this bewildering array of animal taxa using conventional taxonomic approaches need expert taxonomists verifications. If a specimen is damaged or fragmented, at an immature stage of development, or part of an undiscovered cryptic species, even specialists may be unable to make precise identification. DNA barcoding technology solves these problems because non-specialists can obtain barcodes from tiny amounts of tissue, in many cases even when it has been cooked and prepared, or even digested. In this review paper we discussed (i) the emerging importance and applications of DNA barcoding technology using mitochondrial DNA sequences as a reference target, (ii) Development of handheld DNA sequencing technology that can be applied in the field for biodiversity inventories and (iii) the limitations of DNA barcoding technologies and (iv) providing insight into the diversity of life.

Key words: DNA barcoding, mtDNA, COI gene, Molecular taxonomy, Species identification, Biodiversity analysis

Introduction

A biodiversity crisis has emerged in the last decades and we are confronted with the highest extinction rates since the formation of human society (Pimm et al. 1995). Mitigation measures