MECHATRONICS BOOK SERIES:
SYSTEM DESIGN AND SIGNAL
PROCESSING - VOLUME 1

Editors
Asan G. A. Muthalif
Amir Akramin Shafie
Siti Fauziah Toha
Iskandar Al-Thani Mahmood

IIUM Press
CONTENTS

Editorial Notes ........................................................................................................... v
About the Editors ........................................................................................................ vi
Contents ....................................................................................................................... vii

1 Energy Harvesting For Wide Area Sensor Networks ........................................... 1
   Nahrul Khair Alang Md Rashid and Mohamad Ghazali Ameer Amsa

2 Design And Development Of Automatic Paper Box Folding Machine ............. 8
   Md Mozasser Rahman, Anwar Hussain bin Mohamed Rasied and Ahmad
   Zulkamal Ismail

3 Intelligent Shoe Guard System .............................................................................. 20
   M. J. E. Salami, A. M. Aibinu, Siti Sarah binti Mohd Sufian

4 Applications of Mechatronics Engineering In Modern Agriculture .................. 29
   Nahrul Khair Alang Md Rashid

5 Mathematical Modeling of Counter Flow Scrubber Using Eulerian-
   Lagrangian Approach ............................................................................................. 34
   Bashir Ahmed Danzomo and Momoh Jimoh E. Salami

6 Auto Landmarks Generation For SLAM Algorithm ............................................ 42
   Nahrul Khair Alang Md Rashid and Imama Karim Manba Usama

7 Automatic Intelligent Ordering System Design and Tools Selection ................. 46
   Siti Fauziah Toha and Rosdiazli Ibrahim

8 Design And Development of a Sorting Machine Using Multiple Sensory System
   ................................................................................................................................. 52
   Md Mozasser Rahman1, Siti Fatimah binti Abdul Rahim
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Development of Intelligent Wiper for Vehicle Windshield: Mechanical Design</td>
<td>Shahrul Na'im Sidek, Abd Rahman Ibrahim</td>
</tr>
<tr>
<td>10</td>
<td>Design and Development of Intelligent Wiper for Vehicle Windshield: Electrical Design</td>
<td>Shahrul Na'im Sidek, Mohammad Afhamuddin Ab Aziz</td>
</tr>
<tr>
<td>11</td>
<td>Design and Development of Intelligent Wiper for Vehicle Windshield: Final Assembly And Results</td>
<td>Shahrul Na'im Sidek, Mohammad Afhamuddin Ab Aziz</td>
</tr>
<tr>
<td>13</td>
<td>Design and Implementation of Instant Noodles Vending Machine</td>
<td>M.M. Rashid</td>
</tr>
<tr>
<td>15</td>
<td>Design of Software Tool to Detect QRS Complex from ECG Signal</td>
<td>Wahju Sediono</td>
</tr>
<tr>
<td>16</td>
<td>Development of a Jet Powered Floating Platform (In Air)</td>
<td>M. Zharif, Raisuddin Khan and Masum Billah</td>
</tr>
<tr>
<td>17</td>
<td>Development of Experimental Station for Earthquake Prediction</td>
<td>A. M. Aibinu, M. J. E. Salami, Asan Gani Muthalif, Sumaiyah Mior Badri, Sarah Khalidah and Nuruleeman Saat</td>
</tr>
<tr>
<td>18</td>
<td>Development of Robotic Manipulator to Assist Human by Using Brain Signal</td>
<td>Rodhiah, Raisuddin Khan and Masum Billah</td>
</tr>
<tr>
<td>19</td>
<td>Development of Unmanned Aerial Vehicle – Part I</td>
<td>Shahrul Na'im Sidek, M. Ismail Mohtar, A Mushawwir M Khalil</td>
</tr>
</tbody>
</table>
20 Development of Unmanned Aerial Vehicle – Part 2.................................................. 129
Shahrul Na'im Sidek, A Mushawwir M Khalil, M. Ismail Mohtar

21 Earthquake Prediction And Monitoring Using Unusual Animal Behavior..... 134
A. M. Aibinu, W. Astuti, M. J. E. Salami, R. Akmelawati and Asan Gani Muthalif

22 Development of Automatic Rocking Baby Cradle.............................................. 141
W. Astuti, N. F. Azlan, A.M. Aibinu, Momoh Jimoh E. Salami and Wahyudi Martono

23 Electrooculography (EOG)-Controlled Wheelchair........................................ 149
Shahrul Na'im Sidek, M. Iqbal Zakaria and A. Ridwan A Aziz

24 Conceptual Design of an Intelligent Coconut Dehusking.................................. 155
M. J. E. Salami, A. M. Aibinu

25 An Electrooculogram (EOG) Signal for Wheelchair Motion Control............. 163
Salmiah Ahmad, Nurul Muthmainnah Mohd Noor

26 A conceptual Paper on Intelligent Car Battery Monitoring System............... 171
Abdul Hafiz Bin Sahar, Khairul Azhar Bin Muhamat, M. J. E. Salami, and A. M. Aibinu

27 GIS-Based Vehicle Traffic Simulation............................................................. 177
Wahju Sediono

28 Intelligent Postal Mails Sorter............................................................................. 183
Mohd Arif Faiz Bin Omar, Mohd Zain Bin Ismail, M. J. E. Salami, A. M. Aibinu

29 Intelligent Wet Scrubber System for Industrial Air Pollution Control.......... 188
Bashir Ahmed Danzomo and Momoh Jimoh E. Salami

30 Leveraging on Nature for Systems Design....................................................... 194
Nahrul Khair Alang Md Rashid and Safinaz Kader Mohideen

31 Natural Ventilation of Yam Storage System................................................... 199
Murtala Abdulazeez, M.J.E. Salami, Md. Raisuddin Khan

32 Self-Restrap Capability in Engineering Systems.............................................. 208
Nahrul Khair Alang Md Rashid and Aous Naji Rasheed
33 Simulation of Airflow and Temperature Distribution in Yam Storage System 213
_Murtala Abdulazeez, M.J.E. Salami, Md. Raisuddin Khan, Nabeel Adeyemi_

34 Sound Identification in Noisy Environment .............................................. 218
_Nahrul Khair Alang Md Rashid, Nor Hidayati Diana Nordin and Alim Sabur Ajibola_

35 Intelligent CCTV-Based Monitoring System for Kulliyyah of Engineering, IIUM ................................................................. 225
_M. J. E. Saslami,, A. M. Aibinu and Nur Syahrain binti Mohd Jahini_

36 Virtual Modeling of Two-Wheeled Wheelchair using Msc Visual Nastran 4D ................................................................. 231
_Salmiah Ahmad, M. O. Tokhi_
CHAPTER 6

Auto Landmarks Generation for SLAM Algorithm

Nahrul Khair Alang Md Rashid and Imama Karim Manba Usama
Department of Mechatronics Engineering
International Islamic University Malaysia
Jalan Gombak, Selangor D.E., Malaysia
nahrul@iium.edu.my

6.1 Introduction

An autonomous robot must know its pose in order to move to the next step. A non-autonomous robot merely executes the planned path that has already been programmed. An early method of determining the robot current position is using dead reckoning (DR) approach. In DR, current position is estimated by adding to the last position an amount equal to the change in distance traveled. The change is calculated based on the speed, time, and direction of movement. The problem with this method is that measurement errors tend to be cumulative and with time the calculated position will be far from the actual position. Errors are introduced among others by sensors, encoders, and slippage of the wheels while moving. The errors must be corrected, and this lead to a new algorithm.

Simultaneous Localization and Mapping (SLAM), also sometimes called Concurrent Localization and Mapping (CLAM), is a two part process in which a robot builds a map of its environment and use the map to determine its pose. Early SLAM algorithm makes use of Kalman Filter to estimate the next position. Due to non-linearities introduced by for instance sensor errors and wheel slippage the Extended Kalman Filter (EKF) was used.

SLAM makes it possible for a moving robot starting from an unknown location without previous knowledge of the environment to build a map using its on-board sensors while using the same map to compute its location [1]. SLAM allows a robot to move autonomously in an environment without prior programming of its path. It is a well-known and well-researched problem but its applications in real life is still plagued with many challenges. The acronym SLAM was presented in 1995 at International Symposium on Robotics Research. Durrant-Whyte and Bailey have produced a two-part tutorial paper on SLAM that covers the topic comprehensively including the history of its development [2].

6.2 SLAM Challenges

The idea in SLAM is to eventually create the map of the environment and to enable robots to navigate their way. The challenges in dynamic environment where other objects moves in relation to the robot is bigger than in static environment. As the robot moves in an environment it continuously creates and updates the map of the environment it is in. This map can be extracted and used for specific purposes. The ability to move autonomously also enables such robots to navigate itself and functions as service robots.

There are a number of challenges associated with SLAM. Thrun listed and enumerated five challenges [3]:
1. measurement noise,
2. dimensionality of the area being mapped,
3. correspondence or data association,
4. temporal variation.