Engine and Auxiliary Systems

Edited by Prof. Dr. A.K.M. Mohiuddin

IIUM PRESS

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Engine and Auxiliary Systems

Edited by Prof. Dr. A.K.M. Mohiuddin

IIUM Press

Published by: IIUM Press International Islamic University Malaysia

.

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

A.K.M. Mohiuddin Engine and Auxiliary Systems A.K.M. Mohiuddin

ISBN: 978-967-418-216-8

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

> Printed by : IIUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan

Table of Contents

Preface	iv
Table of Contents	v
Chapter 1	
Experimental analysis and comparison of performance characteristics of catalytic converters A.K.M. Mohiuddin	1
Chapter 2	
Experimental analysis and simulation of catalytic converters A.K.M. Mohiuddin	. 8
Chapter 3	
Thermal design of mechanical devices using expert system A.K.M. Mohiuddin	14
Chapter 4	
Exhaust system optimization using GT-Power A.K.M. Mohiuddin	21
Chapter 5	
Experimental analysis to determine the relationship between noise and back pressure for muffler design – Muffler design requirements A.K.M. Mohiuddin	Part I: 29
Chapter 6	
Experimental analysis to determine the relationship between noise and back pressure for muffler design – II: Experimental results A.K.M. Mohiuddin	Part 36
Chapter 7	
2 nd Generation IIUM Buggy Car – Part I: Design A.K.M. Mohiuddin	42
Chapter 8	
2 nd Generation IIUM Buggy Car – Part II: Fabrication A.K.M. Mohiuddin	48
Chapter 9	
Robust design optimization of valve timing using multi-objective genetic algorithm (MOGA) A.K.M. Mohiuddin and Yap Haw Shin	53
Chapter 10	
A study of an aftermarket voltage stabilizer for its performance and emission on passengers vehicle A.K.M. Mohiuddin, Sany Izan Ihsan and Noor Azammi Abd Murat	60

Chapter 11

Investigation of engine performance using designed swirl adapter A.K.M. Mohiuddin	67				
Chapter 12					
Comparison of various types of powertrain used in automotive vehicles in terms of performance and emissi A.K.M. Mohiuddin and Ali Faiz					
Chapter 13					
Automotive catalytic converters: Current status and some future perspectives A.K.M. Mohiuddin and Jalal Mohammed Zayan					
Chapter 14					
3-Cylinder gasoline direct injection as opposed to 4-cylinder multi-port fuel injection for lower fuel consumpt and NO _X emission A.K.M. Mohiuddin and Anwar bin Mohd Sood	tion 86				
Chapter 15					
Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part I: Simulation A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa	92				
Chapter 16					
Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part II: Performance and Emission A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa	e 101				
Chapter 17					
Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part I: Simulation A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman	109				
Chapter 18					
Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part II: Combustion Analysis A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman	116				
Chapter 19					
Development of Low Cost Catalytic Converter from Non-Precious Metals A.K.M. Mohiuddin	123				
Chapter 20					
Performance Investigation of Energy Efficient Hybrid Engine towards Green Technology Ataur Rahman	131				
Chapter 21					
Production of Aluminum-Silicon Carbide Composites Using Powder Metallurgy at Sintering Temperatures at the Aluminum Melting Point Part II Yasin Nimir	bove 138				
Chapter 22					
Comparison between composites reinforced with natural and synthetic fibers: Part I Yasin Nimir	143				

Chapter 2	3							
Compa	rison between	composites i	reinforced	with natur	al fibres d	and synthe	tic fibres l	Part II

Yasin Nimir						
Chapter 24						
Production of Aluminium reinforced with SiC particulates using powder metallurgy Yassin Nimir						
Chapter 25						
Development of automatic magnetic particle system for automotive parts inspection Meflah Hrairi, Mohd Shah Bin Rizal, Salah Echrif	160					
Chapter 26						
Performance of an Automatic Magnetic Particle Inspection of Automotive Parts Meftah Hrairi, Mohd Shah Bin Rizal, Salah Echrif	166					
Chapter 27						
Numerical simulation of complex turbulent flows Asif Hoda	172					
Chapter 28						
Direct numerical simulation (DNS) and large eddy simulation (LES) Asif Hoda	177					
Chapter 29						
Reynolds averaged navier stokes (RANS) Simulation Asif Hoda	182					
Chapter 30						
<i>Film Cooling of Turbine Blades</i> Asif Hoda	192					

15I

Automatic magnetic particle system for inspection: performance

Chapter 26

Performance of an Automatic Magnetic Particle Inspection of Automotive Parts

Meftah Hrairi, Mohd Shah Bin Rizal, Salah Echrif

Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia

Introduction

In the trend toward improvement of quality assurance, billions of parts per year are nondestructively tested for surface cracks in the automotive industry. This puts a lot of stress on both the automotive components manufacturing process and the human inspectors. In order to streamline the entire automotive components production system and to relieve inspector stress, it is necessary to inspect the components automatically based on computer vision systems [1]. An automated MPI system, much faster and more effective because it became a real-time system, has been developed [2]. In this system there are two subsystems, the software and the hardware. The hardware consists of an automation system that is responsible for movement of the camera, rotation of the tested work pieces and application of the magnetic particles. All of this mechanism will be controlled in automatic sequences by the software. The software movements [3]. The performance of the new MPI system will be discussed and results of comparisons to the previous system will be shown.

System Performance

Performance of Rotating Clamper System

To observe the performance of the rotating clamper, the specimen is divided into four parts diametrically; with each region being 90 degrees in angle. In this application, the diameter of the specimen is set within a range from minimum 15mm to maximum 100mm. The ranging is selected based on the field of view that the CCD camera can provide. For the experiment, a camshaft of 35mm in diameter is selected as a specimen. The time is taken region by region in sequence with the direction of rotation of the specimen (Figure 1). It is noted that the clampers rotate at constant speed. During MPI, the rotation of specimen is taken region by region by region, from region 1 to region 4. For simplification, each 90° region is marked by color of green, blue, red and yellow respectively.