Engine and Auxiliary Systems

Edited by Prof. Dr. A.K.M. Mohiuddin
Table of Contents

Preface iv

Table of Contents v

Chapter 1
Experimental analysis and comparison of performance characteristics of catalytic converters 1
A.K.M. Mohiuddin

Chapter 2
Experimental analysis and simulation of catalytic converters 8
A.K.M. Mohiuddin

Chapter 3
Thermal design of mechanical devices using expert system 14
A.K.M. Mohiuddin

Chapter 4
Exhaust system optimization using GT- Power 21
A.K.M. Mohiuddin

Chapter 5
Experimental analysis to determine the relationship between noise and back pressure for muffler design – Part I: Muffler design requirements 29
A.K.M. Mohiuddin

Chapter 6
Experimental analysis to determine the relationship between noise and back pressure for muffler design – Part II: Experimental results 36
A.K.M. Mohiuddin

Chapter 7
2nd Generation IIUM Buggy Car – Part I: Design 42
A.K.M. Mohiuddin

Chapter 8
2nd Generation IIUM Buggy Car – Part II: Fabrication 48
A.K.M. Mohiuddin

Chapter 9
Robust design optimization of valve timing using multi-objective genetic algorithm (MOGA) 53
A.K.M. Mohiuddin and Yap Haw Shin

Chapter 10
A study of an aftermarket voltage stabilizer for its performance and emission on passengers vehicle 60
A.K.M. Mohiuddin, Sany Izan Ihsan and Noor Azammi Abd Murat
Chapter 11
Investigation of engine performance using designed swirl adapter
A.K.M. Mohiuddin 67

Chapter 12
Comparison of various types of powertrain used in automotive vehicles in terms of performance and emission
A.K.M. Mohiuddin and Ali Faiz 74

Chapter 13
Automotive catalytic converters: Current status and some future perspectives
A.K.M. Mohiuddin and Jalal Mohammed Zayan 80

Chapter 14
3-Cylinder gasoline direct injection as opposed to 4-cylinder multi-port fuel injection for lower fuel consumption and NO\textsubscript{x} emission
A.K.M. Mohiuddin and Anwar bin Mohd Sood 86

Chapter 15
Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part I: Simulation
A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa 92

Chapter 16
Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part II: Performance and Emission 101
A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa

Chapter 17
Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part I: Simulation
A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman 109

Chapter 18
Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part II: Combustion Analysis
A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman 116

Chapter 19
Development of Low Cost Catalytic Converter from Non-Precious Metals
A.K.M. Mohiuddin 123

Chapter 20
Performance Investigation of Energy Efficient Hybrid Engine towards Green Technology
Ataur Rahman 131

Chapter 21
Production of Aluminum-Silicon Carbide Composites Using Powder Metallurgy at Sintering Temperatures above the Aluminum Melting Point Part II
Yasin Nimir 138

Chapter 22
Comparison between composites reinforced with natural and synthetic fibers: Part I
Yasin Nimir 143
Chapter 23

Comparison between composites reinforced with natural fibres and synthetic fibres Part II
Yassin Nimir

Chapter 24

Production of Aluminium reinforced with SiC particulates using powder metallurgy
Yassin Nimir

Chapter 25

Development of automatic magnetic particle system for automotive parts inspection
Meflah Hrairi, Mohd Shah Bin Rizal, Salah Echirif

Chapter 26

Performance of an Automatic Magnetic Particle Inspection of Automotive Parts
Meflah Hrairi, Mohd Shah Bin Rizal, Salah Echirif

Chapter 27

Numerical simulation of complex turbulent flows
Asif Hoda

Chapter 28

Direct numerical simulation (DNS) and large eddy simulation (LES)
Asif Hoda

Chapter 29

Reynolds averaged navier stokes (RANS) Simulation
Asif Hoda

Chapter 30

Film Cooling of Turbine Blades
Asif Hoda
Chapter 26

Performance of an Automatic Magnetic Particle Inspection of Automotive Parts

Meftah Hrairi, Mohd Shah Bin Rizal, Salah Echraf

Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia

Introduction

In the trend toward improvement of quality assurance, billions of parts per year are nondestructively tested for surface cracks in the automotive industry. This puts a lot of stress on both the automotive components manufacturing process and the human inspectors. In order to streamline the entire automotive components production system and to relieve inspector stress, it is necessary to inspect the components automatically based on computer vision systems [1]. An automated MPI system, much faster and more effective because it became a real-time system, has been developed [2]. In this system there are two subsystems, the software and the hardware. The hardware consists of an automation system that is responsible for movement of the camera, rotation of the tested work pieces and application of the magnetic particles. All of this mechanism will be controlled in automatic sequences by the software. The software system consists of the image processing algorithm and the control software which controls all the hardware movements [3]. The performance of the new MPI system will be discussed and results of comparisons to the previous system will be shown.

System Performance

Performance of Rotating Clamper System

To observe the performance of the rotating clamper, the specimen is divided into four parts diametrically; with each region being 90 degrees in angle. In this application, the diameter of the specimen is set within a range from minimum 15mm to maximum 100mm. The ranging is selected based on the field of view that the CCD camera can provide. For the experiment, a camshaft of 35mm in diameter is selected as a specimen. The time is taken region by region in sequence with the direction of rotation of the specimen (Figure 1). It is noted that the clamping rotate at constant speed. During MPI, the rotation of specimen is taken region by region, from region 1 to region 4. For simplification, each 90° region is marked by color of green, blue, red and yellow respectively.