Engine and Auxiliary Systems

Edited by
Prof. Dr. A.K.M. Mohiuddin

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Engine and Auxiliary Systems

Edited by Prof. Dr. A.K.M. Mohiuddin

IIUM Press
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Experimental analysis and comparison of performance characteristics of catalytic converters</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>A.K.M. Mohiuddin</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Experimental analysis and simulation of catalytic converters</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>A.K.M. Mohiuddin</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Thermal design of mechanical devices using expert system</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>A.K.M. Mohiuddin</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Exhaust system optimization using GT- Power</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>A.K.M. Mohiuddin</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Experimental analysis to determine the relationship between noise and back pressure for muffler design – Part I: Muffler design requirements</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>A.K.M. Mohiuddin</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Experimental analysis to determine the relationship between noise and back pressure for muffler design – Part II: Experimental results</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>A.K.M. Mohiuddin</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2nd Generation IIUM Buggy Car – Part I: Design</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>A.K.M. Mohiuddin</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2nd Generation IIUM Buggy Car – Part II: Fabrication</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>A.K.M. Mohiuddin</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Robust design optimization of valve timing using multi-objective genetic algorithm (MOGA)</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>A.K.M. Mohiuddin and Yap Haw Shin</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>A study of an aftermarket voltage stabilizer for its performance and emission on passengers vehicle</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>A.K.M. Mohiuddin, Sany Izan Ihsan and Noor Azammi Abd Murat</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 11

Investigation of engine performance using designed swirl adapter
A.K.M. Mohiuddin 67

Chapter 12

Comparison of various types of powertrain used in automotive vehicles in terms of performance and emission
A.K.M. Mohiuddin and Ali Faiz 74

Chapter 13

Automotive catalytic converters: Current status and some future perspectives
A.K.M. Mohiuddin and Jalal Mohammed Zayan 80

Chapter 14

3-Cylinder gasoline direct injection as opposed to 4-cylinder multi-port fuel injection for lower fuel consumption and NOx emission
A.K.M. Mohiuddin and Anwar bin Mohd Sood 86

Chapter 15

Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part I: Simulation
A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa 92

Chapter 16

Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part II: Performance and Emission 101
A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa

Chapter 17

Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part I: Simulation
A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman 109

Chapter 18

Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part II: Combustion Analysis
A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman 116

Chapter 19

Development of Low Cost Catalytic Converter from Non-Precious Metals
A.K.M. Mohiuddin 123

Chapter 20

Performance Investigation of Energy Efficient Hybrid Engine towards Green Technology
Ataur Rahman 131

Chapter 21

Production of Aluminum-Silicon Carbide Composites Using Powder Metallurgy at Sintering Temperatures above the Aluminum Melting Point Part II
Yasin Nimir 138

Chapter 22

Comparison between composites reinforced with natural and synthetic fibers: Part I
Yasin Nimir 143

vi
Chapter 23
Comparison between composites reinforced with natural fibres and synthetic fibres Part II
Yassin Nimir

Chapter 24
Production of Aluminium reinforced with SiC particulates using powder metallurgy
Yassin Nimir

Chapter 25
Development of automatic magnetic particle system for automotive parts inspection
Meflah Hrairi, Mohd Shah Bin Rizal, Salah Echref

Chapter 26
Performance of an Automatic Magnetic Particle Inspection of Automotive Parts
Meflah Hrairi, Mohd Shah Bin Rizal, Salah Echref

Chapter 27
Numerical simulation of complex turbulent flows
Asif Hoda

Chapter 28
Direct numerical simulation (DNS) and large eddy simulation (LES)
Asif Hoda

Chapter 29
Reynolds averaged navier stokes (RANS) Simulation
Asif Hoda

Chapter 30
Film Cooling of Turbine Blades
Asif Hoda
Development of automatic magnetic particle system for automotive parts inspection

Meftah Hrairi, Mohd Shah Bin Rizal, Salah Echrif

Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia

Introduction

In manual Magnetic Particle Inspection (MPI), achieving zero-defect principles in quality management concerning the inspection reliability, such as very low false negative rate in order to avoid pseudo scrap, cannot be satisfactorily attained [1]. Therefore, processing techniques such as magnetization, spraying of magnetic ink, black-light illuminating, optical pickup of the magnetic particle indication and analysis of these by machine vision procedures like pattern segmentation and recognition need to be automated. This also includes supervising procedures like control of the black-light intensity and/or the quality of the liquid powder suspension, such as rate of powder deterioration by separation of powder and the fluorescent color. Other components and applications for automated magnetic particle inspection have been suggested [2-10]. Since MPI is still the most sensitive surface crack inspection method, variability of human interpretation and variation in components can reduce the reliability of magnetic particle inspection flaw detection to only about 70%. Hence the need for an on line, heavy duty, high speed parts inspection with on line documentation and near 100 percent flaw detectability within calibrated equipment, if possible, by using modern electronic systems that can also achieve lower costs [2].

This chapter describes the development and incorporation of an automated system into an existing manual MPI machine. This automated setup will be comprised of a magnetic testing machine, a machine vision structure, and self-controlling system.

Magnetic Particle Inspection

Magnetic particle inspection is a nondestructive method for the detection of defects in ferromagnetic materials. Application of a magnetic field or current flow through the material is used in combination with the principle that the magnetic susceptibility of a defect is markedly poorer (the magnetic resistance is greater) than that of the surrounding material. In theory, magnetic particle testing is a relatively simple concept. It can be considered as a