Engine and Auxiliary Systems

Edited by
Prof. Dr. A.K.M. Mohiuddin

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Engine and Auxiliary Systems

Edited by Prof. Dr. A.K.M. Mohiuddin

IIUM Press
Table of Contents

Preface iv

Table of Contents v

Chapter 1
Experimental analysis and comparison of performance characteristics of catalytic converters 1
A.K.M. Mohiuddin

Chapter 2
Experimental analysis and simulation of catalytic converters 8
A.K.M. Mohiuddin

Chapter 3
Thermal design of mechanical devices using expert system 14
A.K.M. Mohiuddin

Chapter 4
Exhaust system optimization using GT- Power 21
A.K.M. Mohiuddin

Chapter 5
Experimental analysis to determine the relationship between noise and back pressure for muffler design – Part I: Muffler design requirements 29
A.K.M. Mohiuddin

Chapter 6
Experimental analysis to determine the relationship between noise and back pressure for muffler design – Part II: Experimental results 36
A.K.M. Mohiuddin

Chapter 7
2nd Generation IIUM Buggy Car – Part I: Design 42
A.K.M. Mohiuddin

Chapter 8
2nd Generation IIUM Buggy Car – Part II: Fabrication 48
A.K.M. Mohiuddin

Chapter 9
Robust design optimization of valve timing using multi-objective genetic algorithm (MOGA) 53
A.K.M. Mohiuddin and Yap Haw Shin

Chapter 10
A study of an aftermarket voltage stabilizer for its performance and emission on passengers vehicle 60
A.K.M. Mohiuddin, Sany Izan Ihsan and Noor Azammi Abd Murat

 v
Chapter 11

Investigation of engine performance using designed swirl adapter
A.K.M. Mohiuddin

Chapter 12

Comparison of various types of powertrain used in automotive vehicles in terms of performance and emission
A.K.M. Mohiuddin and Ali Faiz

Chapter 13

Automotive catalytic converters: Current status and some future perspectives
A.K.M. Mohiuddin and Jalal Mohammed Zayan

Chapter 14

3-Cylinder gasoline direct injection as opposed to 4-cylinder multi-port fuel injection for lower fuel consumption and NO\textsubscript{x} emission
A.K.M. Mohiuddin and Anwar bin Mohd Sood

Chapter 15

Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part I: Simulation
A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa

Chapter 16

Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part II: Performance and Emission
A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa

Chapter 17

Thermodynamic Analysis of Combustion of CAMEO CFE Engine – Part I: Simulation
A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman

Chapter 18

Thermodynamic Analysis of Combustion of CAMEO CFE Engine – Part II: Combustion Analysis
A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman

Chapter 19

Development of Low Cost Catalytic Converter from Non-Precious Metals
A.K.M. Mohiuddin

Chapter 20

Performance Investigation of Energy Efficient Hybrid Engine towards Green Technology
Ataur Rahman

Chapter 21

Production of Aluminum-Silicon Carbide Composites Using Powder Metallurgy at Sintering Temperatures above the Aluminum Melting Point Part II
Yasin Nimir

Chapter 22

Comparison between composites reinforced with natural and synthetic fibers: Part I
Yasin Nimir

vi
Chapter 23

Comparison between composites reinforced with natural fibres and synthetic fibres Part II
Yassin Nimir

151

Chapter 24

Production of Aluminium reinforced with SiC particulates using powder metallurgy
Yassin Nimir

156

Chapter 25

Development of automatic magnetic particle system for automotive parts inspection
Meflah Hrairi, Mohd Shah Bin Rizal, Salah Echref

160

Chapter 26

Performance of an Automatic Magnetic Particle Inspection of Automotive Parts
Meflah Hrairi, Mohd Shah Bin Rizal, Salah Echref

166

Chapter 27

Numerical simulation of complex turbulent flows
Asif Hoda

172

Chapter 28

Direct numerical simulation (DNS) and large eddy simulation (LES)
Asif Hoda

177

Chapter 29

Reynolds averaged navier stokes (RANS) Simulation
Asif Hoda

182

Chapter 30

Film Cooling of Turbine Blades
Asif Hoda

192
Chapter 21

Production of Aluminum-Silicon Carbide Composites Using Powder Metallurgy at Sin Temperatures above the Aluminum Melting Point Part II

Yasin Nimir

Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia

Introduction

Among various metal matrix composite systems, aluminum alloy composites aluminum reinforced with silicon carbide particles has attracted an attention in automotive aerospace applications due to their superior strength-to-weight ratio and high tensile strength. However, the widespread use of such composites is still largely unrealized due to limited knowledge of the processin-microstructure-property relationship in such materials. In automotive industry, these materials have been used as pistons, piston ring inserts, cylinder liners, brake rotors, brake pads, and connecting rods. A new developed pin-fin substrates made of AlSiC for liquid-cooled high-power module system used in hybrid electric vehicle (HEV) in technologies.

As we know, composite materials are designed to have the high strength and stiffness yet low in density. Composite materials are fabricated from combination of matrix and reinforcement. Reinforcement which is also known particulate-reinforced has contributes hardness in composite materials. Aluminum is used widely as a structural material especially in the aerospace industry because of its lightweight properties however the low strength and melting point of aluminum were always a problem. A cheap method of solving these problems was to use a reinforced element such as SiC particles and whiskers. The ceramic particulate additions make it possible to increase the specific elastic modulus of aluminum and improve its thermal properties.

Powder metallurgy (PM) method can help us to produce aluminum composites reinforced with SiC particulates produce a homogenous distribution of reinforcement in the matrix. Powder metallurgy also has the advantage of producing net-shape components minimizing machining process which is a great problem in case of aluminum silicon carbide composite as a result