Engine and Auxiliary Systems

Edited by Prof. Dr. A.K.M. Mohiuddin

IIUM PRESS

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Engine and Auxiliary Systems

Edited by Prof. Dr. A.K.M. Mohiuddin

IIUM Press

Published by: IIUM Press International Islamic University Malaysia

.

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

A.K.M. Mohiuddin Engine and Auxiliary Systems A.K.M. Mohiuddin

ISBN: 978-967-418-216-8

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

> Printed by : IIUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan

Table of Contents

Preface	iv
Table of Contents	v
Chapter 1	
Experimental analysis and comparison of performance characteristics of catalytic converters A.K.M. Mohiuddin	1
Chapter 2	
Experimental analysis and simulation of catalytic converters A.K.M. Mohiuddin	. 8
Chapter 3	
Thermal design of mechanical devices using expert system A.K.M. Mohiuddin	14
Chapter 4	
Exhaust system optimization using GT-Power A.K.M. Mohiuddin	21
Chapter 5	
Experimental analysis to determine the relationship between noise and back pressure for muffler design – Muffler design requirements A.K.M. Mohiuddin	Part I: 29
Chapter 6	
Experimental analysis to determine the relationship between noise and back pressure for muffler design – II: Experimental results A.K.M. Mohiuddin	Part 36
Chapter 7	
2 nd Generation IIUM Buggy Car – Part I: Design A.K.M. Mohiuddin	42
Chapter 8	
2 nd Generation IIUM Buggy Car – Part II: Fabrication A.K.M. Mohiuddin	48
Chapter 9	
Robust design optimization of valve timing using multi-objective genetic algorithm (MOGA) A.K.M. Mohiuddin and Yap Haw Shin	53
Chapter 10	
A study of an aftermarket voltage stabilizer for its performance and emission on passengers vehicle A.K.M. Mohiuddin, Sany Izan Ihsan and Noor Azammi Abd Murat	60

Chapter 11

Investigation of engine performance using designed swirl adapter A.K.M. Mohiuddin	67				
Chapter 12					
Comparison of various types of powertrain used in automotive vehicles in terms of performance and emissi A.K.M. Mohiuddin and Ali Faiz					
Chapter 13					
Automotive catalytic converters: Current status and some future perspectives A.K.M. Mohiuddin and Jalal Mohammed Zayan					
Chapter 14					
3-Cylinder gasoline direct injection as opposed to 4-cylinder multi-port fuel injection for lower fuel consumpt and NO _X emission A.K.M. Mohiuddin and Anwar bin Mohd Sood	tion 86				
Chapter 15					
Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part I: Simulation A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa	92				
Chapter 16					
Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part II: Performance and Emission A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa	e 101				
Chapter 17					
Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part I: Simulation A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman	109				
Chapter 18					
Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part II: Combustion Analysis A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman	116				
Chapter 19					
Development of Low Cost Catalytic Converter from Non-Precious Metals A.K.M. Mohiuddin	123				
Chapter 20					
Performance Investigation of Energy Efficient Hybrid Engine towards Green Technology Ataur Rahman	131				
Chapter 21					
Production of Aluminum-Silicon Carbide Composites Using Powder Metallurgy at Sintering Temperatures at the Aluminum Melting Point Part II Yasin Nimir	bove 138				
Chapter 22					
Comparison between composites reinforced with natural and synthetic fibers: Part I Yasin Nimir	143				

Chapter 2	3							
Compa	rison between	composites i	reinforced	with natur	al fibres d	and synthe	tic fibres l	Part II

Yasin Nimir						
Chapter 24						
Production of Aluminium reinforced with SiC particulates using powder metallurgy Yassin Nimir						
Chapter 25						
Development of automatic magnetic particle system for automotive parts inspection Meflah Hrairi, Mohd Shah Bin Rizal, Salah Echrif	160					
Chapter 26						
Performance of an Automatic Magnetic Particle Inspection of Automotive Parts Meftah Hrairi, Mohd Shah Bin Rizal, Salah Echrif	166					
Chapter 27						
Numerical simulation of complex turbulent flows Asif Hoda	172					
Chapter 28						
Direct numerical simulation (DNS) and large eddy simulation (LES) Asif Hoda	177					
Chapter 29						
Reynolds averaged navier stokes (RANS) Simulation Asif Hoda	182					
Chapter 30						
<i>Film Cooling of Turbine Blades</i> Asif Hoda	192					

15I

Chapter 20

Performance Investigation of Energy Efficient Hybrid Engine towards Green Technology

Ataur Rahman

Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia

Abstract

The rapid expansion of motor vehicle in globally dedicates the increase of energy demand in an acceleration fashion. If driving habits remain unchanged, car will have to become nearly three times more energy-efficient by 2030 just to maintain that sector's present consumption. If energy use trends are projected to year 2100, transportation would then have to be twenty times more energy-efficient, which roughly equates to 170km per litre. In a typical U.S. city, motor vehicle emissions account for 30%-50% of hydrocarbon, 80%-90% of carbon monoxide, and 40%-60% of nitrogen oxide emissions which are contaminated the environmental, changing climate and harming ecosystem. However, if the automobile is to survive as an economically sound and viable transportation system its energy consumption and harmful emissions must be reduced. Currently battery electric and hybrid cars are considered as the energy efficient. But, the problems of these technologies are the batteries recharging time, maintenance cost and disposal. The disposal of batteries might make bio-dreadful condition which is the harmful for the humans and others living things. Advanced power systems and reduced vehicle road-loads are necessary in order to make significant gains in motor vehicles energy. The aim of the project is to develop a waste energy harvesting electromagnetic hybrid engine.. The engine is expected to yield the best efficiency in the range of 65-75% at stable operation speed of 4000rpm and reduce emission about 70-80%. The additional component electro-supercharged associated with the waste heat recovery system of the engine will be used to supply the high pressure air to the engine combustion chamber for creating the massive turbulence effect of air-fuel mixture and burn the 100% mixture in shortly. In overall, it is expected that the light duty motor vehicle car travel about 30-45km by using 1 litre of petrol. A pilot study has been conducted on the development of a small scale hybrid engine by using a 120cc internal combustion SI engine with the financed of IIUM. The engine has been tested with a 2.5 kN car and found that car travel 85 km with speed of 60 km/hr by using 1 litre of petrol.