Engine and Auxiliary Systems

Edited by Prof. Dr. A.K.M. Mohiuddin

IIUM PRESS

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Engine and Auxiliary Systems

Edited by Prof. Dr. A.K.M. Mohiuddin

IIUM Press

Published by: IIUM Press International Islamic University Malaysia

.

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

A.K.M. Mohiuddin Engine and Auxiliary Systems A.K.M. Mohiuddin

ISBN: 978-967-418-216-8

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

> Printed by : IIUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan

Table of Contents

Preface	iv
Table of Contents	v
Chapter 1	
Experimental analysis and comparison of performance characteristics of catalytic converters A.K.M. Mohiuddin	1
Chapter 2	
Experimental analysis and simulation of catalytic converters A.K.M. Mohiuddin	. 8
Chapter 3	
Thermal design of mechanical devices using expert system A.K.M. Mohiuddin	14
Chapter 4	
Exhaust system optimization using GT-Power A.K.M. Mohiuddin	21
Chapter 5	
Experimental analysis to determine the relationship between noise and back pressure for muffler design – Muffler design requirements A.K.M. Mohiuddin	Part I: 29
Chapter 6	
Experimental analysis to determine the relationship between noise and back pressure for muffler design – II: Experimental results A.K.M. Mohiuddin	Part 36
Chapter 7	
2 nd Generation IIUM Buggy Car – Part I: Design A.K.M. Mohiuddin	42
Chapter 8	
2 nd Generation IIUM Buggy Car – Part II: Fabrication A.K.M. Mohiuddin	48
Chapter 9	
Robust design optimization of valve timing using multi-objective genetic algorithm (MOGA) A.K.M. Mohiuddin and Yap Haw Shin	53
Chapter 10	
A study of an aftermarket voltage stabilizer for its performance and emission on passengers vehicle A.K.M. Mohiuddin, Sany Izan Ihsan and Noor Azammi Abd Murat	60

Chapter 11

Investigation of engine performance using designed swirl adapter A.K.M. Mohiuddin	67				
Chapter 12					
Comparison of various types of powertrain used in automotive vehicles in terms of performance and emissi A.K.M. Mohiuddin and Ali Faiz					
Chapter 13					
Automotive catalytic converters: Current status and some future perspectives A.K.M. Mohiuddin and Jalal Mohammed Zayan					
Chapter 14					
3-Cylinder gasoline direct injection as opposed to 4-cylinder multi-port fuel injection for lower fuel consumpt and NO _X emission A.K.M. Mohiuddin and Anwar bin Mohd Sood	tion 86				
Chapter 15					
Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part I: Simulation A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa	92				
Chapter 16					
Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part II: Performance and Emission A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa	e 101				
Chapter 17					
Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part I: Simulation A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman	109				
Chapter 18					
Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part II: Combustion Analysis A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman	116				
Chapter 19					
Development of Low Cost Catalytic Converter from Non-Precious Metals A.K.M. Mohiuddin	123				
Chapter 20					
Performance Investigation of Energy Efficient Hybrid Engine towards Green Technology Ataur Rahman	131				
Chapter 21					
Production of Aluminum-Silicon Carbide Composites Using Powder Metallurgy at Sintering Temperatures at the Aluminum Melting Point Part II Yasin Nimir	bove 138				
Chapter 22					
Comparison between composites reinforced with natural and synthetic fibers: Part I Yasin Nimir	143				

Chapter 2	3							
Compa	rison between	composites i	reinforced	with natur	al fibres d	and synthe	tic fibres l	Part II

Yasin Nimir						
Chapter 24						
Production of Aluminium reinforced with SiC particulates using powder metallurgy Yassin Nimir						
Chapter 25						
Development of automatic magnetic particle system for automotive parts inspection Meflah Hrairi, Mohd Shah Bin Rizal, Salah Echrif	160					
Chapter 26						
Performance of an Automatic Magnetic Particle Inspection of Automotive Parts Meftah Hrairi, Mohd Shah Bin Rizal, Salah Echrif	166					
Chapter 27						
Numerical simulation of complex turbulent flows Asif Hoda	172					
Chapter 28						
Direct numerical simulation (DNS) and large eddy simulation (LES) Asif Hoda	177					
Chapter 29						
Reynolds averaged navier stokes (RANS) Simulation Asif Hoda	182					
Chapter 30						
<i>Film Cooling of Turbine Blades</i> Asif Hoda	192					

15I

Optimization of valve timing

Chapter 9

Robust design optimization of valve timing using multi-objective genetic algorithm (MOGA)

A.K.M. Mohiuddin and Yap Haw Shin

Department of Mechanical Engineering, International Islamic University Malaysia

Introduction

In the internal combustion engine, valve timing plays a crucial role in order to improve engine performance. Since many years, a lot of giant automobile manufacturers in the world have developed powerful VVT (Variable Valve Timing) engine which has advantages on fuel economy, engine power, torque, low emission etc. In fact, valve train system is one of the critical key systems to design better engine performances.

Genetic algorithm is one of the recently developed high robustness and multi-objective optimization purpose evolutionary types of algorithm that uses the analogy of natural selection and reproduction as optimization concept in order to seek for the absolute optimal solution.

Designing of an engine usually will lead to the field of design optimization in order to provide optimal tuning to the engine. Classical optimization is easily dealt with a single objective problem. Unfortunately, in real life, especially solving engineering problems, it will always involve highly non-linear and complex model. Therefore, multi-objective optimization is a good practice in solving this real engineering problem. In this project, the multi-objective optimization is using Multi-Objective Genetic Algorithm (MOGA) which is famous with its robustness optimization strategy.

Majority of the research works in this project were in CAE software environment and 1D engine simulation. The chapter conducts robust design optimization of CAMPRO 1.6L (S4PH) engine valve timing at various engine speeds using multi-objective genetic algorithm (MOGA) for the future variable valve timing (VVT) system research and development. This chapter involves engine modeling in 1D software simulation environment, GT-Power. GT-Power is one of the CAE tool available in GT-SUITE developed by Gamma Technologies Inc. The tools available in the GT-SUITE contain GT-Power, GT-Drive, GT-Vtrain, GT-Cool, GT-Fuel and GT-Crank [1]. Each of the tools has powerful application and analysis ability on different part of automobile. Then, the GT-Power model is run simultaneously with modeFrontier to perform multi-objective optimization.