Engine and Auxiliary Systems

Edited by
Prof. Dr. A.K.M. Mohiuddin

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Engine and Auxiliary Systems

Edited by Prof. Dr. A.K.M. Mohiuddin

IIUM Press
Table of Contents

Preface
iv

Table of Contents
v

Chapter 1
Experimental analysis and comparison of performance characteristics of catalytic converters
A.K.M. Mohiuddin
1

Chapter 2
Experimental analysis and simulation of catalytic converters
A.K.M. Mohiuddin
8

Chapter 3
Thermal design of mechanical devices using expert system
A.K.M. Mohiuddin
14

Chapter 4
Exhaust system optimization using GT- Power
A.K.M. Mohiuddin
21

Chapter 5
Experimental analysis to determine the relationship between noise and back pressure for muffler design – Part I: Muffler design requirements
A.K.M. Mohiuddin
29

Chapter 6
Experimental analysis to determine the relationship between noise and back pressure for muffler design – Part II: Experimental results
A.K.M. Mohiuddin
36

Chapter 7
2nd Generation IIUM Buggy Car – Part I: Design
A.K.M. Mohiuddin
42

Chapter 8
2nd Generation IIUM Buggy Car – Part II: Fabrication
A.K.M. Mohiuddin
48

Chapter 9
Robust design optimization of valve timing using multi-objective genetic algorithm (MOGA)
A.K.M. Mohiuddin and Yap Haw Shin
53

Chapter 10
A study of an aftermarket voltage stabilizer for its performance and emission on passengers vehicle
A.K.M. Mohiuddin, Sany Izan Ihsan and Noor Azammi Abd Murat
60
Chapter 11

Investigation of engine performance using designed swirl adapter
A.K.M. Mohiuddin

Chapter 12

Comparison of various types of powertrain used in automotive vehicles in terms of performance and emission
A.K.M. Mohiuddin and Ali Faiz

Chapter 13

Automotive catalytic converters: Current status and some future perspectives
A.K.M. Mohiuddin and Jalal Mohammed Zayan

Chapter 14

3-Cylinder gasoline direct injection as opposed to 4-cylinder multi-port fuel injection for lower fuel consumption and NOX emission
A.K.M. Mohiuddin and Anwar bin Mohd Sood

Chapter 15

Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part I: Simulation
A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa

Chapter 16

Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part II: Performance and Emission
A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa

Chapter 17

Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part I: Simulation
A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman

Chapter 18

Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part II: Combustion Analysis
A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman

Chapter 19

Development of Low Cost Catalytic Converter from Non-Precious Metals
A.K.M. Mohiuddin

Chapter 20

Performance Investigation of Energy Efficient Hybrid Engine towards Green Technology
Ataur Rahman

Chapter 21

Production of Aluminum-Silicon Carbide Composites Using Powder Metallurgy at Sintering Temperatures above the Aluminum Melting Point Part II
Yasin Nimir

Chapter 22

Comparison between composites reinforced with natural and synthetic fibers: Part I
Yasin Nimir

vi
Chapter 23

Comparison between composites reinforced with natural fibres and synthetic fibres Part II
Yassin Nimir

Chapter 24

Production of Aluminium reinforced with SiC particulates using powder metallurgy
Yassin Nimir

Chapter 25

Development of automatic magnetic particle system for automotive parts inspection
Meflah Hrairi, Mohd Shah Bin Zal, Salah Echref

Chapter 26

Performance of an Automatic Magnetic Particle Inspection of Automotive Parts
Meflah Hrairi, Mohd Shah Bin Rizal, Salah Echref

Chapter 27

Numerical simulation of complex turbulent flows
Asif Hoda

Chapter 28

Direct numerical simulation (DNS) and large eddy simulation (LES)
Asif Hoda

Chapter 29

Reynolds averaged navier stokes (RANS) Simulation
Asif Hoda

Chapter 30

Film Cooling of Turbine Blades
Asif Hoda
IIUM Buggy Car – Part I

Chapter 7

2nd Generation IIUM Buggy Car – Part I: Design

A.K.M. Mohiuddin
Department of Mechanical Engineering, International Islamic University Malaysia

Abstract
This chapter provides the detailed information involved in the design of the Second generation IIUM buggy car project. Part I includes all details regarding the method of design, design's philosophy, concept and model construction and result evaluation. Background research and literature review have been done in order to provide a basic reference for this buggy car design. Correct material selections and its dimensions can reduce the overall weight of the car while accurate design collaboration within the suspension system can ensure a better maneuver characteristic. A number of design options have been generated. The best choice was based on a lightweight buggy car with high strength performance, good handling characteristic, and also considering excellent driver's ergonomic aspect.

Introduction
By definition, buggy car is a light, four-wheeled vehicle, usually with one seat, and with or without a calash top. The whole concept of this project is mainly referred on four aspects of engineering that are safety, durability, performance and cost. Therefore, extensive research and study have to be done in order to get the most suitable and efficient design for the buggy car. Moreover, as the purpose of this project is to design the 2nd generation buggy car, the 1st built IIUM buggy car will be the main references throughout this project.

The analyses will be focused on three main components that are engine and power train; chassis; as well as the steering, suspension and braking system. These systems will be selected by analyses and tests that will be conducted throughout the duration of the project. There are many restrictions on the car frame and engine which offer enough challenge for knowledge, creativity, and imagination.