Engine and Auxiliary Systems

Edited by
Prof. Dr. A.K.M. Mohiuddin

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Engine and Auxiliary Systems

Edited by Prof. Dr. A.K.M. Mohiuddin

IIUM Press
Table of Contents

Preface iv

Table of Contents v

Chapter 1

Experimental analysis and comparison of performance characteristics of catalytic converters 1
A.K.M. Mohiuddin

Chapter 2

Experimental analysis and simulation of catalytic converters 8
A.K.M. Mohiuddin

Chapter 3

Thermal design of mechanical devices using expert system 14
A.K.M. Mohiuddin

Chapter 4

Exhaust system optimization using GT- Power 21
A.K.M. Mohiuddin

Chapter 5

Experimental analysis to determine the relationship between noise and back pressure for muffler design – Part I: Muffler design requirements 29
A.K.M. Mohiuddin

Chapter 6

Experimental analysis to determine the relationship between noise and back pressure for muffler design – Part II: Experimental results 36
A.K.M. Mohiuddin

Chapter 7

2nd Generation IJUM Buggy Car – Part I: Design 42
A.K.M. Mohiuddin

Chapter 8

2nd Generation IJUM Buggy Car – Part II: Fabrication 48
A.K.M. Mohiuddin

Chapter 9

Robust design optimization of valve timing using multi-objective genetic algorithm (MOGA) 53
A.K.M. Mohiuddin and Yap Haw Shin

Chapter 10

A study of an aftermarket voltage stabilizer for its performance and emission on passengers vehicle 60
A.K.M. Mohiuddin, Sany Izan Ihsan and Noor Azimmi Abd Murat
Chapter 11

Investigation of engine performance using designed swirl adapter
A.K.M. Mohiuddin

Chapter 12

Comparison of various types of powertrain used in automotive vehicles in terms of performance and emission
A.K.M. Mohiuddin and Ali Faiz

Chapter 13

Automotive catalytic converters: Current status and some future perspectives
A.K.M. Mohiuddin and Jalal Mohammed Zayan

Chapter 14

3-Cylinder gasoline direct injection as opposed to 4-cylinder multi-port fuel injection for lower fuel consumption and NOx emission
A.K.M. Mohiuddin and Anwar bin Mohd Sood

Chapter 15

Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part I: Simulation
A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa

Chapter 16

Investigation of Spark Ignition Multipoint Engine Using Water Addition - Part II: Performance and Emission
A.K.M. Mohiuddin and Mohammad Edilan Bin Mustaffa

Chapter 17

Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part I: Simulation
A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman

Chapter 18

Thermodynamic Analysis of Combustion of CAMPRO CFE Engine – Part II: Combustion Analysis
A.K.M. Mohiuddin, Izzarief Bin Zahari and Abdullah Aiman

Chapter 19

Development of Low Cost Catalytic Converter from Non-Precious Metals
A.K.M. Mohiuddin

Chapter 20

Performance Investigation of Energy Efficient Hybrid Engine towards Green Technology
Ataur Rahman

Chapter 21

Production of Aluminum-Silicon Carbide Composites Using Powder Metallurgy at Sintering Temperatures above the Aluminum Melting Point Part II
Yasin Nimir

Chapter 22

Comparison between composites reinforced with natural and synthetic fibers: Part I
Yasin Nimir
Chapter 23
Comparison between composites reinforced with natural fibres and synthetic fibres Part II
Yassin Nimir

Chapter 24
Production of Aluminium reinforced with SiC particulates using powder metallurgy
Yassin Nimir

Chapter 25
Development of automatic magnetic particle system for automotive parts inspection
Meflah Hrairi, Mohd Shah Bin Rizal, Salah Echrf

Chapter 26
Performance of an Automatic Magnetic Particle Inspection of Automotive Parts
Meflah Hrairi, Mohd Shah Bin Rizal, Salah Echrf

Chapter 27
Numerical simulation of complex turbulent flows
Asif Hoda

Chapter 28
Direct numerical simulation (DNS) and large eddy simulation (LES)
Asif Hoda

Chapter 29
Reynolds averaged navier stokes (RANS) Simulation
Asif Hoda

Chapter 30
Film Cooling of Turbine Blades
Asif Hoda
Performance characteristics of catalytic converters

Chapter 1

Experimental analysis and comparison of performance characteristics of catalytic converters

A.K.M. Mohiuddin

Department of Mechanical Engineering, International Islamic University Malaysia

Abstract

The purpose of this chapter is to present the results of an experimental study of the performance and conversion efficiencies of ceramic monolith three-way catalytic converters (TWCC) employed in automotive exhaust lines for the reduction of gasoline emissions. Two ceramic converters of different cell density, substrate length, hydraulic channel diameter and wall thickness were studied to investigate the effect of varying key parameters on conversion efficiencies and pressure drop. Based on the emission test results, the conversion efficiencies of HC from both converters were calculated and evaluated.

Keywords: catalytic converter, exhaust emission, conversion efficiency, substrate, performance characteristics.

Introduction

A serious issue that is always been debated among the environmentalists over the decades and recent years is air pollution. As the technology keep on evolving and emerging, it carries along undesirable effects apart from its broad application and use. One of the main contributors is said to be the emission of harmful gases produced by vehicle exhaust lines. The number of vehicles miles travels per year continues to increase as a result of higher demand and needs. Consequently, an increase in the number led to the increase of the content of pollutants in air.

The conversion process is performed by means of catalyst which accelerates the chemical reactions (Ganesan, 2004). It remains unchanged through the process and able to sustain high temperatures caused by incoming exhaust stream. Most frequently, precious metals such as Platinum (Pt), Palladium (Pd), Rhodium (Rh) and Vanadium (V) are being used as catalysts and because of their rareness and outstanding ability, catalytic converters become among the most expensive devices in a vehicle. Though the researchers begin to replace them with oxides of base metals, which are much cheaper, such as Zinc (Zn), Aluminum (Al) and Magnesium (Mg), however, due to their lower performance compared to the precious ones, they do not have any