Advanced Machining Process

Editors
Mohammad Yeakub Ali
AKM Nurul Amin
Erry Yulian Triblas Adesta

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Advanced Machining Process

Editors
Mohammad Yeakub Ali
AKM Nurul Amin
Erry Yulian Triblas Adesta

IIUM Press
Advanced Machining Process

Table of Contents

Preface ii
Acknowledgement iii
Copyright iv

PART 1: ELECTRO DISCHARGE MACHINING 1

Chapter 1 Tool Wear rate during Electrical Discharge Machining (EDM) with Eccentric Electrode
Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isna Bin Mohd Isa 2

Chapter 2 Wear Ratio and Work Surface Finish during Electrical Discharge Machining (EDM) with Eccentric Electrode
Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isna Bin Mohd Isa 7

Chapter 3 Role of Current, Voltage and Spark on-time on Electrode Material Migration during EDM
Ahsan Ali Khan, Nurul Shima Mohd Noh 12

Chapter 4 A Study on Material Removal Rate during EDM with Tantalum Carbide-Copper Compacted Electrode
Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hanibiah and Mohd Faiz Bin Nazi Nadin 18

Chapter 5 Features of EDM of Mild Steel with Ta-Cu Powder Compacted Electrodes
Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hanibiah and Mohd Faiz Bin Nazi Nadin 23

Chapter 6 Relationship between Machining Variables and Process Characteristics during Wire EDM
Ahsan Ali Khan, M. B. M. Ali and N. B. M. Shaffiar 28
Chapter 7
Influence of Machining Parameters on Surface Roughness during EDM of Mild Steel
Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali

Chapter 8
Machining of Ceramic Materials: A Review
Abdus Sabur, Md. Abdul Maleque and Mohammad Yeakub Ali

Chapter 9
Formation of Micro-cracks and Recast Layer during EDM of Mild Steel using Copper Electrodes
Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali

Chapter 10
Features of Electrode Wear during EDM of Mild Steel with TaC-Cu Powder Compacted Electrodes
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 11
Influence of Current, Spark On-time and Off-time on Electrode Wear during EDM of Mild Steel
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 12
A Comparative study on Work Surface Hardness EDMed by Ta-C Powder Compacted and Copper Electrodes
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 13
An Introduction to Electrical Discharge Machining
Ahsan Ali Khan and Mohammed Baba Ndaliman

Chapter 14
Developments in EDM Process Variables
Ahsan Ali Khan, Mohammed Baba Ndaliman and Mohammad Yeakub Ali
PART 2: MICROMACHINING ... 76

Chapter 15
Focused Ion Beam Micromachining: Technology and Application
Israd Hakim Jaafar, Nur Atiqah, Asfana Banu, Mohammad Yeakub Ali

Chapter 16
Finish Cut of Titanium Alloy using Micro Electro Discharge Milling for Nano Surface Finish
Mohammad Yeakub Ali, Muhamad Faizal, Asfana Banu, and Nur Atikah

Chapter 17
Investigation of MRR for Finish Cut of Titanium Alloy using Micro Electro Discharge Milling
Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu

Chapter 18
Investigation of TWR for Finish Cut of Titanium Alloy using Micro Electro Discharge Milling
Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu

Chapter 19
Investigation of Chip Formation and Minimum Chip Thickness in Micro/Meso Milling: Methodology and Design of Experiment
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 20
Micro/Meso Milling of Aluminium Alloy 1100: Analysis and Modelling of Minimum Chip Thickness
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 21
Effect of Micro End Milling Tool Diameter on Minimum Chip Thickness
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 22
Micro Wire Electrical Discharge Machining of Tungsten Carbide: Methodology and Procedure
Mohammad Yeakub Ali, Ahmad Chaaban Elabta and Musah Jamal Alrefaie

Chapter 23
Micro Wire Electrical Discharge Machining of Tungsten Carbide: Analysis of Surface Roughness
Mohammad Yeakub Ali, Ahmad Chaaban Elabta and Musah Jamal Alrefaie

Chapter 24
Micro Wire Electrical Discharge Machining of Tungsten Carbide: Analysis of Material Removal Rate
Mohammad Yeakub Ali, Musah Jamal Alrefaie and Ahmad Chaaban Elabta

Chapter 25
Micro Electro Discharge Machining of Micro Pillar Array: Process
Chapter 25
Micro Electro Discharge Machining of Micro Pillar Array: Process Development
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza

Chapter 26
Micro Electro Discharge Machining of Micro Pillar Array: Analysis of Surface Finish
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza

Chapter 27
Micro Electro Discharge Machining of Micropillar Array: Analysis of Material Removal Rate
Mohammad Yeakub Ali, Nor Suriza and Wan Emira Azaty

Chapter 28
Vibration Issue in Micro End Milling
Mohammad Yeakub Ali, Muhamad Lutfi and Mohamad Ismail Fahmi

Chapter 29
Fabrication of Micro Filter by Electro Discharge Machining
Abdus Sabur and Mohammad Yeakub Ali
PART 3: PRECISION MACHINING ... 165

Chapter 30
High Speed Milling of Mould Steel using 1.5mm-diameter End-mills
Mohamed Konneh, Khairunnisa Ahmad and Rose Fazleen

Chapter 31
Precision Grinding of Silicon Carbide using 46 μm Grain Diamond Cup Wheel
Mohamed Konneh and Ahmad Fauzan

Chapter 32
Precision Grinding of Silicon Carbide using 76 μm Grain Diamond Cup Wheel
Mohamed Konneh and Mohd Shukur Zawawi

Chapter 33
Precision Grinding of Silicon Carbide using 107 μm Grain Diamond Cup Wheel
Mohamed Konneh and Mohd Fadzil

Chapter 34
Investigation of Surface Integrity during Precision Grinding of Silicon Carbide using Diamond Grinding Pins
Mohamed Konneh, Mohamad Lutfi and Mohamad Shahrilnizam

Chapter 35
A Comparative Study on Flank Wear and Work Surface Finish during High Speed Milling of Cast Iron with Different Carbide Tools
Ahsan Ali Khan, Zuraida Aman Nor Rasid and Izamsawati Yusof
Chapter 32

Precision Grinding of Silicon Carbide using 76 μm Grain Diamond Cup Wheel

Mohamed Konneh and Mohd Shukur Zawawi
Faculty of Engineering - International Islamic University Malaysia
[Email: mkonneh@iiu.edu.my]

Keywords: Silicon Carbide, ductile-mode machining, 76 μm grain cup wheel, surface roughness

Abstract. Grinding of Silicon Carbide (SiC) has been found difficult to be machined since the material is typically hard and brittle. Ductile mode machining has been developed to produce the better result of surface roughness for ground and brittle materials like SiC. Ductile mode grinding of brittle material has been and will continue to be in research area because of its increasing industrial applications. This project presents a study of precision surface grinding of SiC with varying machining parameters by employing ductile mode machining. The work-piece material was ground using a 76 μm cup wheel with aim of producing fracture-free surfaces of the ground work-piece material. The machining parameters chosen for the grinding process of SiC are depth of cut, feed rate and speed of the spindle. These parameters are used to explore the effects of the machining parameters on the machining characteristics, surface roughness and surface integrity.

Introduction

Hard and brittle materials are difficult to machine as they have high hardness and low toughness characteristics. Hard and brittle materials include Si, SiC, Aluminium oxide, zirconium oxide. Extensive research work has shown that diamond is the most suitable material used to machine hard and brittle materials since it has hardness that will provide wear resistance. Silicon carbide has low density, high strength, low thermal expansion, high thermal conductivity, high hardness, high elastic modulus, excellent thermal shock resistance, superior chemical inertness.

Advanced ceramic such as silicon carbide (SiC) is a carbon and silicon chemical compound. For over hundred years, SiC has been produced and made into grinding wheel because of its excellent abrasive. This SiC is produced by high temperature electro-chemical reaction of sand and carbon. It has good resistance to wear, thermal shock, and corrosion. It has also has low friction coefficient, and it retains high strength at elevated temperatures. SiC is a type of ceramic and belongs to the class of hard and brittle material. Therefore machining it poses a real problem due to its low fracture toughness, making it very sensitive to crack. The efficient grinding of high performance ceramic involves the selection of appropriate operating parameters to maximize the material removal rate (MRR) while maintaining the low surface finish and limiting surface damage. Ceramics have very low fracture toughness, very sensitive to crack, so it is essential to distinguish which method should be used during machining the work piece. Venkatesh, V.C and Izman, S. [1] stated that machining of hard and brittle materials always poses problems. Blau et.al [2] mentioned that grinding can be classified as one of the most sophisticated machining process. Sanjay