


Advanced Machining Process

Editors

Mohammad Yeakub Ali

AKM Nurul Amin

Erry Yulian Triblas Adesta

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Advanced Machining Process

Editors

Mohammad Yeakub Ali AKM Nurul Amin Erry Yulian Triblas Adesta

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Mohammad Yeakub Ali, AKM Nurul Amin & Erry Yulian Triblas Adesta: Advanced Machining Process

ISBN: 978-967-418-162-8

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed By: IIUM PRINTING SDN.BHD.

No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543

EMAIL: iiumprinting@yahoo.com

Advanced Machining Process

Table of Contents

Preface	Ī
Acknowledgement	ii
Copyright	is
PART 1: ELECTRO DISCHARGE MACHINING	1
Chapter 1	2
Tool Wear rate during Electrical Discharge Machining (EDM) with Eccentric Electrode	
Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa	
Chapter 2	7
Wear Ratio and Work Surface Finish during Electrical Discharge Machining (EDM) with Eccentric Electrode	
Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa	
Chapter 3	12
Role of Current, Voltage and Spark on-time on Electrode Material Migration during EDM	
Ahsan Ali Khan, Nurul Shima Mohd Noh	
Chapter4	18
A Study on Material Removal Rate during EDM with Tantalum	
Carbide-Copper Compacted Electrode Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and Mohd Faiz Bin Nazi Nadin	
Chapter 5	23
Features of EDM of Mild Steel with Ta-Cu Powder Compacted Electrodes	
Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and Mohd Faiz Bin Nazi Nadin	
Chapter 6	28
Relationship between Machining Variables and Process Characteristics during Wire EDM	
Ahsan Ali Khan, M. B. M. Ali and N. B. M. Shaffiar	

Chapter 7	33
Influence of Machining Parameters on Surface Roughness during EDM of Mild Steel	
Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali	
Chapter 8	38
Machining of Ceramic Materials: A Review Abdus Sabur, Md. Abdul Maleque and Mohammad Yeakub Ali	
Chapter 9	4 4
Formation of Micro-cracks and Recast Layer during EDM of Mild Steel using Copper Electrodes	
Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali	
Chapter 10	49
Features of Electrode Wear during EDM of Mild Steel with TaC-Cu Powder Compacted Electrodes	
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah	
Chapter 11	54
Influence of Current, Spark On-time and Off-time on Electrode Wear during EDM of Mild Steel	
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah	
Chapter 12	59
A Comparative study on Work Surface Hardness EDMed by Ta-C Powder Compacted and Copper Electrodes	
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah	
Chapter 13	65
An Introduction to Electrical Discharge Machining Ahsan Ali Khan and Mohammed Baha Ndaliman	
Chapter 14	70
Developments in EDM Process Variables Ahsan Ali Khan, Mohammed Baba Ndaliman and Mohammad Yeakub Ali	

PART 2: MICROMACHINING	76
Chapter 15 Focused Ion Beam Micromachining: Technology and Application Israd Hakim Jaafar, Nur Atiqah, Asfana Banu, Mohammad Yeakub Ali	77
Chapter 16 Finish Cut of Titanium Alloy using Micro Electro Discharge Milling for Nano Surface Finish Mohammad Yeakub Ali, Muhamad Faizal, Asfana Banu, and Nur Atikah	83
Chapter 17 Investigation of MRR for Finish Cut of Titanium Alloy using Micro Electro Discharge Milling Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu	89
Chapter 18 Investigation of TWR for Finish Cut of Titanium Alloy using Micro Electro Discharge Milling Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu	95
Chapter 19 Investigation of Chip Formation and Minimum Chip Thickness in Micro/Meso Milling: Methodology and Design of Experiment Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki	101
Chapter 20 Micro/Meso Milling of Aluminium Alloy 1100: Analysis and Modelling of Minimum Chip Thickness	107
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki Chapter 21 Effect of Micro End Milling Tool Diameter on Minimum Chip Thickness	113
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki Chapter 22 Micro Wire Electrical Discharge Machining of Tungsten Carbide: Methodology and Procedure Mohammad Yeakub Ali, Ahmad Chaaban Elabtah and Musab Jamal Alrefaie	119
Chapter 23 Micro Wire Electrical Discharge Machining of Tungsten Carbide: Analysis of Surface Roughness Mohammad Yeakub Ali, Ahmad Chaaban Elabtah and Musab Jamal Alrefaie	124
Chapter 24 Micro Wire Electrical Discharge Machining of Tungsten Carbide: Analysis of Material Removal Rate	130
Mohammad Yeakub Ali, Musab Jamal Alrefaie and Ahmad Chaaban Elabtah Chapter 25 Micro Electro Discharge Machining of Micro Pillar Array: Process	136

Chapter 25 Micro Electro Discharge Machining of Micro Pillar Array: Process	136
Development Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza	
Chapter 26	142
Micro Electro Discharge Machining of Micro Pillar Array: Analysis of Surface Finish	
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza	
Chapter 27	148
Micro Electro Discharge Machining of Micropillar Array: Analysis of Material Removal Rate	
Mohammad Yeakub Ali, Nor Suriza and Wan Emira Azaty	
Chapter 28	154
Vibration Issue in Micro End Milling Mohammad Yeakub Ali, Muhamad Lutfi and Mohamad Ismail Fahmi	
Chapter 29	159
Fabrication of Micro Filter by Electro Discharge Machining Abdus Sabur and Mohammad Yeakub Ali	

PART 3:	PRECISION MACHINING	165
Chapter 30 I	High Speed Milling of Mould Steel using 1.5mm-diameter End-mills Mohamed Konneh, Khairunnisa Ahmad and Rose Fazleen	166
	Precision Grinding of Silicon Carbide using 46 µm Grain Diamond Tup Wheel Mohamed Konneh and Ahmad Fauzan	172
	Precision Grinding of Silicon Carbide using 76 µm Grain Diamond Cup Wheel Mohamed Konneh and Mohd Shukur Zawawi	178
	Precision Grinding of Silicon Carbide using 107 µm Grain Diamond Cup Wheel Mohamed Konneh and Mohd Fadzil	184
	Investigation of Surface Integrity during Precision Grinding of Silicon Carbide using Diamond Grinding Pins Mohamed Konneh, Mohamad Lutfi and Mohamad Shahrilnizam	190
	A Comparative Study on Flank Wear and Work Surface Finish during ligh Speed Milling of Cast Iron with Different Carbide Tools Ahsan Ali Khan, Zuraida Aman Nor Rasid and Izausmawati Yusof	196

Micro Electro Discharge Machining of Micropillar Array: Analysis of Material Removal Rate

Mohammad Yeakub Ali . Nor Suriza and Wan Emira Azaty
Department of Manufacturing and Materials Engineering
Faculty of Engineering, International Islamic University Malaysia
P.O. Box 10, 50728 Kuala Lumpur, Malaysia
: mmyali@iium.edu.my

Keywords: Micro-EDM, Micro pillar array, Microchannel

Abstract. This chapter discusses the experimental study for the fabrication of micro pillar array on titanium alloy. It includes the maximization of material removal rate (MRR) using DT110 micro EDM machine from Mickrotools Inc., Singapore. The work material was Ti-6Al-4V machined with tungsten carbide electrode by varying three machining parameters; powder concentration, energy and feed rate. By using 2³ full factorial design of experiment, eight experiments were conducted. Data were analyzed by Design Expert software and finally optimized the parameters for higher MRR. Highest MRR of 0.027 mg/min is obtained with powder concentration is 15 g/L, energy of 451.25 μJ and feed rate of 8 μm/s.

Results and Discussions

This chapter presents the experimental results on micro die sinking EDM of Ti-6Al-4V. SiC powder at concentration 0 g/L and 15 g/L was investigated for this experiments. Analysis and discussion are made on the MRR and surface roughness (R_a). The results are extracted based on the variation of machining parameters given in Table 3.6. The experimental plans for micro die sinking EDM process were based on the Full Factorial design. The experimental results are reported and analyzed. ANOVA was used to analyze the optimization parameters of surface roughness (Ra) and Material Removal Rate (MRR) in order to fabricate micro pillar array. In this project, we analyzed the effect of powder in micro die sinking EDM on R_a and MRR but only MRR will be discuss and conclude in this report. The parameters using are the concentration of powder Silicon Carbide (g/L), the energy (µJ) and feed rate (µm/s). Optimization of the process is concerning with minimizing of R_a and maximizing MRR.

Experimental Results. The experimental plans and results are presented in this section. The experimental of micro die sinking EDM of Ti-6Al-4V involved 3 factors which were varied at two levels; which are high and low levels. The factors were powder concentration, energy and feed rate. They are labelled A. B and C respectively. The details of the factors are given in Table 3.5. The machining responses that were investigated were MRR and R_a. The micro die sinking EDM process was investigated using one full factorial design. This design is used to identify the significant factors that affect the machining responses. Design expert software version 8 was employed and the experimental results are given in Table 1.

The results from the Table 1 were then placed into the Design Expert software for further analysis according to the steps outlined for full factorial design. Without performing any transformation on the responses, the revealed design status was evaluated, and all the