Advanced Machining Process

Editors
Mohammad Yeakub Ali
AKM Nurul Amin
Erry Yulian Triblas Adesta

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Advanced Machining Process

Editors
Mohammad Yeakub Ali
AKM Nurul Amin
Erry Yulian Triblas Adesta

IIUM Press
Advanced Machining Process

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iii</td>
</tr>
<tr>
<td>Copyright</td>
<td>iv</td>
</tr>
</tbody>
</table>

PART 1: ELECTRO DISCHARGE MACHINING 1

Chapter 1
Tool Wear rate during Electrical Discharge Machining (EDM) with Eccentric Electrode
Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa

Chapter 2
Wear Ratio and Work Surface Finish during Electrical Discharge Machining (EDM) with Eccentric Electrode
Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa

Chapter 3
Role of Current, Voltage and Spark on-time on Electrode Material Migration during EDM
Ahsan Ali Khan, Nurul Shima Mohd Noh

Chapter 4
A Study on Material Removal Rate during EDM with Tantalum Carbide-Copper Compacted Electrode
Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and Mohd Faiz Bin Nazi Nadin

Chapter 5
Features of EDM of Mild Steel with Ta-Cu Powder Compacted Electrodes
Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and Mohd Faiz Bin Nazi Nadin

Chapter 6
Relationship between Machining Variables and Process Characteristics during Wire EDM
Ahsan Ali Khan, M. B. M. Ali and N. B. M. Shaffiar
Chapter 7
Influence of Machining Parameters on Surface Roughness during EDM of Mild Steel
Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali

Chapter 8
Machining of Ceramic Materials: A Review
Abdus Sabur, Md. Abdul Maleque and Mohammad Yeakub Ali

Chapter 9
Formation of Micro-cracks and Recast Layer during EDM of Mild Steel using Copper Electrodes
Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali

Chapter 10
Features of Electrode Wear during EDM of Mild Steel with TaC-Cu Powder Compacted Electrodes
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 11
Influence of Current, Spark On-time and Off-time on Electrode Wear during EDM of Mild Steel
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 12
A Comparative study on Work Surface Hardness EDMed by Ta-C Powder Compacted and Copper Electrodes
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 13
An Introduction to Electrical Discharge Machining
Ahsan Ali Khan and Mohammed Baba Ndaliman

Chapter 14
Developments in EDM Process Variables
Ahsan Ali Khan, Mohammed Baba Ndaliman and Mohammad Yeakub Ali
PART 2: MICROMACHINING ... 76

Chapter 15 ... 77

Focused Ion Beam Micromachining: Technology and Application
Israd Hakim Jaafar, Nur Atiqah, Asfana Bantu, Mohammad Yeakub Ali

Chapter 16 .. 83

Finish Cut of Titanium Alloy using Micro Electro Discharge Milling
for Nano Surface Finish
Mohammad Yeakub Ali, Muhamad Faizal, Asfana Bantu, and Nur Atikah

Chapter 17 .. 89

Investigation of MRR for Finish Cut of Titanium Alloy using Micro
Electro Discharge Milling
Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Bantu

Chapter 18 .. 95

Investigation of TWR for Finish Cut of Titanium Alloy using Micro
Electro Discharge Milling
Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Bantu

Chapter 19 .. 101

Investigation of Chip Formation and Minimum Chip Thickness in
Micro/Meso Milling: Methodology and Design of Experiment
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 20 .. 107

Micro/Meso Milling of Aluminium Alloy 1100: Analysis and
Modelling of Minimum Chip Thickness
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 21 .. 113

Effect of Micro End Milling Tool Diameter on Minimum Chip
Thickness
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 22 .. 119

Micro Wire Electrical Discharge Machining of Tungsten Carbide:
Methodology and Procedure
Mohammad Yeakub Ali, Ahmad Chaaban Elabtah and Musah Jamal Alrefaie

Chapter 23 .. 124

Micro Wire Electrical Discharge Machining of Tungsten Carbide:
Analysis of Surface Roughness
Mohammad Yeakub Ali, Ahmad Chaaban Elabtah and Musah Jamal Alrefaie

Chapter 24 .. 130

Micro Wire Electrical Discharge Machining of Tungsten Carbide:
Analysis of Material Removal Rate
Mohammad Yeakub Ali, Musah Jamal Alrefaie and Ahmad Chaaban Elabtah

Chapter 25 .. 136

Micro Electro Discharge Machining of Micro Pillar Array: Process
Chapter 25
Micro Electro Discharge Machining of Micro Pillar Array: Process Development
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza

Chapter 26
Micro Electro Discharge Machining of Micro Pillar Array: Analysis of Surface Finish
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza

Chapter 27
Micro Electro Discharge Machining of Micropillar Array: Analysis of Material Removal Rate
Mohammad Yeakub Ali, Nor Suriza and Wan Emira Azaty

Chapter 28
Vibration Issue in Micro End Milling
Mohammad Yeakub Ali, Muhamad Lutfi and Mohamad Ismail Fahmi

Chapter 29
Fabrication of Micro Filter by Electro Discharge Machining
Adhus Sabur and Mohammad Yeakub Ali
PART 3: PRECISION MACHINING 165

Chapter 30
High Speed Milling of Mould Steel using 1.5mm-diameter End-mills
Mohamed Konneh, Khairunnisa Ahmad and Rose Fazleen

Chapter 31
Precision Grinding of Silicon Carbide using 46 μm Grain Diamond Cup Wheel
Mohamed Konneh and Ahmad Fauzan

Chapter 32
Precision Grinding of Silicon Carbide using 76 μm Grain Diamond Cup Wheel
Mohamed Konneh and Mohd Shukur Zawawi

Chapter 33
Precision Grinding of Silicon Carbide using 107 μm Grain Diamond Cup Wheel
Mohamed Konneh and Mohd Fadzil

Chapter 34
Investigation of Surface Integrity during Precision Grinding of Silicon Carbide using Diamond Grinding Pins
Mohamed Konneh, Mohamad Lutfi and Mohamad Shahrilnizam

Chapter 35
A Comparative Study on Flank Wear and Work Surface Finish during High Speed Milling of Cast Iron with Different Carbide Tools
Ahsan Ali Khan, Zuraida Aman Nor Rasid and Izamsawati Yusof
Chapter 24

Micro Wire Electrical Discharge Machining of Tungsten Carbide: Analysis of Material Removal Rate

Mohammad Yeakub Ali, Musab Jamal Alrefaie and Ahmad Chaaban Eltabeh
Department of Manufacturing and Materials Engineering
Faculty of Engineering, International Islamic University Malaysia
P.O. Box 10, 50728 Kuala Lumpur, Malaysia
☎: mmyali@iiu.edu.my

Keywords: Micro WEDM, Tungsten carbide, Material removal rate

Abstract. This chapter presents a experimental study to develop mathematical model for material removal rate that relate the machining parameters. The basic objective is to achieve highest possible material removal rate. A micro wire electric discharge machine is used on tungsten carbide workpiece. The electrode material was also tungsten. Taguchi analysis was used to analyze the effect of each parameter on the machining output. Design Expert Version 6.0.8 was used for this analysis. It is found that these parameters have a significant influence on surface roughness. Mathematical model has been developed and the model is found to be adequate.

Analysis of Material Removal Rate

The highest order model was selected where the additional terms are significant. That’s why the ANOVA for Response Surface Reduced Quadratic Model was selected as the logical choice model. Table 1 presents the ANOVA for MRR. Low slandered deviation, R-square near 1 and relatively low PRESS are the best. The Model F-value of 92510.55 implies the model is significant. There is only a 0.25% chance that a "Model F-Value" this large could occur due to noise. Values of "Prob > F" less than 0.0500 indicate model terms are significant. In this case A, B, C, A², B², C², AB are significant model terms. Values greater than 0.1000 indicate the model terms are not significant. The "Pred R-Squared" of 0.9997 is in reasonable agreement with the "Adj R-Squared" of 1.0000. "Adeq Precision" measures the signal to noise ratio. A ratio greater than 4 is desirable. Our ratio of 849.479 indicates an adequate signal. The developed model is expressed by Eq 1. As it left without any simplification to take into account the contribution of all possible considered effect, after the model is developed, a set of test are made using the predicted and actual values to determine how well the equation fit for predicting the response variable and to detect any hidden variable that effect the response variable. Figure 1 shows the interaction between capacitance and feed rate on the response variable MRR. Figure 2-4 show the estimated response of the parameter MRR as a function of two parameters where the left parameter is constant.

\[
MRR = 2112.8 + 244.7A - 77.4B + 32.9C - 20A^2 - 0.2C^2 - 6.2AB. \tag{1}
\]