Advanced Machining Process

Editors
Mohammad Yeakub Ali
AKM Nurul Amin
Erry Yulian Triblas Adesta

IIUM Press
Advanced Machining Process

Table of Contents

Preface
Acknowledgement
Copyright

PART 1: ELECTRO DISCHARGE MACHINING 1

Chapter 1
Tool Wear rate during Electrical Discharge Machining (EDM) with
Eccentric Electrode
Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa

Chapter 2
Wear Ratio and Work Surface Finish during Electrical Discharge
Machining (EDM) with Eccentric Electrode
Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa

Chapter 3
Role of Current, Voltage and Spark on-time on Electrode Material
Migration during EDM
Ahsan Ali Khan, Nurul Shima Mohd Noh

Chapter 4
A Study on Material Removal Rate during EDM with Tantalum
Carbide-Copper Compacted Electrode
Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and
Mohd Faiz Bin Nazi Nadin

Chapter 5
Features of EDM of Mild Steel with Ta-Cu Powder Compacted
Electrodes
Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and
Mohd Faiz Bin Nazi Nadin

Chapter 6
Relationship between Machining Variables and Process Characteristics
during Wire EDM
Ahsan Ali Khan, M. B. M. Ali and N. B. M. Shaffiar
Chapter 7
Influence of Machining Parameters on Surface Roughness during EDM of Mild Steel
Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali

Chapter 8
Machining of Ceramic Materials: A Review
Abbás Sabur, Md. Abdul Maleque and Mohammad Yeakub Ali

Chapter 9
Formation of Micro-cracks and Recast Layer during EDM of Mild Steel using Copper Electrodes
Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali

Chapter 10
Features of Electrode Wear during EDM of Mild Steel with TaC-Cu Powder Compacted Electrodes
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadim and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 11
Influence of Current, Spark On-time and Off-time on Electrode Wear during EDM of Mild Steel
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadim and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 12
A Comparative study on Work Surface Hardness EDMed by Ta-C Powder Compacted and Copper Electrodes
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadim and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 13
An Introduction to Electrical Discharge Machining
Ahsan Ali Khan and Mohammed Baba Ndaliman

Chapter 14
Developments in EDM Process Variables
Ahsan Ali Khan, Mohammed Baba Ndaliman and Mohammad Yeakub Ali
PART 2: MICROMACHINING

Chapter 15
Focused Ion Beam Micromachining: Technology and Application
Israd Hakim Jaafar, Nur Atiqah, Asfana Banu, Mohammad Yeakub Ali

Chapter 16
Finish Cut of Titanium Alloy using Micro Electro Discharge Milling for Nano Surface Finish
Mohammad Yeakub Ali, Muhamad Faizal, Asfana Banu, and Nur Atikah

Chapter 17
Investigation of MRR for Finish Cut of Titanium Alloy using Micro Electro Discharge Milling
Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu

Chapter 18
Investigation of TWR for Finish Cut of Titanium Alloy using Micro Electro Discharge Milling
Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu

Chapter 19
Investigation of Chip Formation and Minimum Chip Thickness in Micro/Meso Milling: Methodology and Design of Experiment
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 20
Micro/Meso Milling of Aluminium Alloy 1100: Analysis and Modelling of Minimum Chip Thickness
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 21
Effect of Micro End Milling Tool Diameter on Minimum Chip Thickness
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 22
Micro Wire Electrical Discharge Machining of Tungsten Carbide: Methodology and Procedure
Mohammad Yeakub Ali, Ahmad Chaaban Elabortah and Musah Jamal Alrefaie

Chapter 23
Micro Wire Electrical Discharge Machining of Tungsten Carbide: Analysis of Surface Roughness
Mohammad Yeakub Ali, Ahmad Chaaban Elabortah and Musah Jamal Alrefaie

Chapter 24
Micro Wire Electrical Discharge Machining of Tungsten Carbide: Analysis of Material Removal Rate
Mohammad Yeakub Ali, Musah Jamal Alrefaie and Ahmad Chaaban Elabortah

Chapter 25
Micro Electro Discharge Machining of Micro Pillar Array: Process
Chapter 25
Micro Electro Discharge Machining of Micro Pillar Array: Process Development
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza

Chapter 26
Micro Electro Discharge Machining of Micro Pillar Array: Analysis of Surface Finish
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza

Chapter 27
Micro Electro Discharge Machining of Micropillar Array: Analysis of Material Removal Rate
Mohammad Yeakub Ali, Nor Suriza and Wan Emira Azaty

Chapter 28
Vibration Issue in Micro End Milling
Mohammad Yeakub Ali, Muhamad Lutfi and Mohamad Ismail Fahmi

Chapter 29
Fabrication of Micro Filter by Electro Discharge Machining
Abdus Sabur and Mohammad Yeakub Ali
PART 3: PRECISION MACHINING ... 165

Chapter 30 ... 166
High Speed Milling of Mould Steel using 1.5mm-diameter End-mills
Mohamed Konneh, Khairunnisa Ahmad and Rose Fazileen

Chapter 31 ... 172
Precision Grinding of Silicon Carbide using 46 μm Grain Diamond
Cup Wheel
Mohamed Konneh and Ahmad Fauzan

Chapter 32 ... 178
Precision Grinding of Silicon Carbide using 76 μm Grain Diamond
Cup Wheel
Mohamed Konneh and Mohd Shukur Zawawi

Chapter 33 ... 184
Precision Grinding of Silicon Carbide using 107 μm Grain Diamond
Cup Wheel
Mohamed Konneh and Mohd Fadzil

Chapter 34 ... 190
Investigation of Surface Integrity during Precision Grinding of
Silicon Carbide using Diamond Grinding Pins
Mohamed Konneh, Mohamad Lutfi and Mohamad Shahrilnizam

Chapter 35 ... 196
A Comparative Study on Flank Wear and Work Surface Finish during
High Speed Milling of Cast Iron with Different Carbide Tools
Ahsan Ali Khan, Zuraida Aman Nor Rasid and Izamsawati Yusof
Chapter 23

Micro Wire Electrical Discharge Machining of Tungsten Carbide: Analysis of Surface Roughness

Mohammad Yeakub Ali, Ahmad Chaaban Elabta and Musab Jamal Alrefaie
Department of Manufacturing and Materials Engineering
Faculty of Engineering, International Islamic University Malaysia
P.O. Box 10, 50728 Kuala Lumpur, Malaysia
✉: mmyah@iium.edu.my

Keywords: Micro WEDM, Tungsten carbide, Surface roughness

Abstract. This chapter presents a experimental study to develop mathematical model for machined surface roughness that relate the machining parameters. The basic objective is to achieve lowest possible surface roughness. A micro wire electro discharge machine is used on tungsten carbide workpiece. The electrode material was also tungsten. Taguchi method is used to formulate the experimental layout, to analyze the effect of each parameter on the machining characteristics, and to predict the optimal level of parameter values using Design Expert Version 6.0.8. It is found that these parameters have a significant influence on surface roughness. Mathematical model has been developed and the model is found to be adequate.

Measurements of Surface Roughness

The surface produced by EDM process consists of a large number of craters that are formed from the discharge energy. The quality of surface mainly depends upon the energy per spark. The roughness of the machined surface increases as the energy of the pulse increases. In other words, at higher pulse energy, the surface will be rough. The pulse energy is a function of the capacitance and the working voltage of the circuit. Therefore, by varying these two parameters fine (smoother) surface could be obtained. The surface produced by this process consists of micro-craters. Low energy discharges that leave small craters are necessary for fine surface finish. However, MRR is the low in order to get a low surface roughness.

The EDM surface is made up of three distinctive layers consisting of white layer/recast layers, heat effected zone and unaffected parent metal. EDM surface is dependent on the solidification behaviour of molten metal after the discharge cessation and subsequent phase transformation. The thickness of the recast layer formed on the workpiece surface and the level of thermal damage suffered by the electrode can be determined by analyzing the growth of the plasma channel during sparking. In addition, the EDM surface has a relatively high micro hardness, which can be explained by the emigration of carbon from the oil dielectrics to the workpiece surface forming iron carbides in the white layer. There are several numbers of useful techniques for measuring surface roughness:

Fast and repeatable, the NT1100 utilizes white light interferometer for high resolution 3D surface measurements, from sub - nanometre roughness to millimetre- high steps. On super smooth or rough surfaces, the versatile NT1100 provides repeatable surface measurement for R&D, wear and failure analysis, and process control. Figure 1 shows the WYKO NT1100 machine. The result for the surface roughness obtained by the machine and after taking the

124