CONTEMPORARY METALLIC MATERIALS

Md Abdul Maleque Iskandar Idris Yaacob Zahurin Halim

IIUM PRESS

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

CONTEMPORARY METALLIC MATERIALS

Edited by:

Md Abdul Maleque
Iskandar Idris Yaacob
Zahurin Halim

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

ISBN: 978-967-418-164-2

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by:

HUM PRINTING SDN. BHD.

No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan

Table of Content

Chapter 1	1
Upgrading of Laterite Ore by Reduction and Leaching Hadi Purwanto and Pramusanto	
Chapter 2 Upgrading of Iron Sand by Magnetic Concentration and Reduction Muta'alim, Hadi Purwanto, Nuryadi Saleh and Pramusanto	7
Chapter 3 Microstructure and Mechanical Properties of Neutron Transmutation Doped of Silicon under Cf-252 Neutron Bombardment Agus Geter Edy Sutjipto, Roslan Yahya	16
Chapter4 Effect of Stabilizer Addition on Crystal Formation of Zirconia Synthesize From Zircon Sand	20
Yuhelda Dahlan Hadi Purwanto, Nuryadi Saleh and Pramusanto	
Chapter 5 Upgrading of Iron-rich Laterite Ore Using Reverse Flotation	27
Hadi Purwanto, Mutaalim, Yuhelda Dahlan, Nuryadi Saleh and Pramusanto	
Chapter 6 Influences of Additives on Copper Film Quality and Gap Filling Capability of Plating Process	34
Shahjahan Mridha and Law Shao Beng	
Chapter 7 Grain Refining in AISI 430 Ferritic Stainless Steel Welds by Addition of Metal Powder	41
Shahjahan Mridha and Muhammed Olawale Hakeem Amuda	
Chapter 8 Grain Refinement Practices in Ferritic Stainless Steel Welds	48
Muhammed Olawale Hakeem Amudaand Shahjahan Mridha	
Chapter 9 Alloy Coating on Steel Surfaces by Melt Synthesis of Elemental Metal Powders	53
Shahjahan Mridha	

Chapter 10 Synthesis And Characterization of Lithium Manganese Copper Oxides for use in Lithium Rechargeable Cells	59
I.I. Yaacob, N. Kamarulzaman, and W.J. Basirun ^c	
Chapter 11 Influence of Grain Size on Magnetic Properties of Electroplated NiFe	65
Yusrini Marita and Iskandar Idris Yaacob	
Chapter 12 Composite Coating on Titanium Alloy Using High Power Laser	70
Shahjahan Mridha	
Chapter 13 The Tribological Behaviour of Al-Si Automotive Piston Material Arifutzzaman and Md Abdul Maleque	75
Chapter 14 Conceptual Design of Folding Bicycle Frame with Light Weight Materials Md Abdul Maleque and Mohd Nizam	81
Chapter 15 Reverse Engineering of Automotive Piston Md Abdul Maleque and A. Arifutzzaman	86
Chapter 16 Recent Trend in Application of High Temperature Ferritic Fe-Cr Alloys in Power Plant Mohd Hanafi Bin Ani and Raihan Othman	92
Chapter 17 Measurement of Oxygen Permeability in Bulk Alloys by Internal Oxidation of Dilute Constituent	98
Mohd Hanafi Bin Ani and Raihan Othman	
Chapter 18 Recent Trend on Application of High Temperature Ferritic Fe-Cr Alloys in Solid Oxide Fuel Cells	104
Mohd Hanafi Bin Ani and Raihan Othman	
Chapter 19 Principle of Solid Electrolyte Oxygen Sensor <i>Mohd Hanafi Bin Ani and Raihan Othman</i>	110
Chapter 20 Surface Oxygen Potential on the Oxide Scale during High Temperature Oxidation of Fe-Cr Alloys at 1073 K	116
Mohd Hanafi Bin Ani and Raihan Othman	

Mohd Hanafi Bin Ani and Raihan Othman Chapter 21	121
Reverse Engineering for Automotive Fuel Tank Md Abdul Maleque and Atiqah Afdzaluddin	
Chapter 22 The possibility of utilizing scanning electron microscope for materials characterization	127
Agus Geter Edy Sutjipto Chapter 23	135
Piezoelectricity of Zinc Oxide Thin film as Source of Energy for Sensor Applications	133
Agus Geter Edy Sutjipto, Liyana Abdul Gafar and Nor Azyati Syazwina Roselan	
Chapter 24 Study on Zinc Oxide Crystal Growth Agus Geter Edy Sutjipto, Liyana Abdul Gafar and Nor Azyati Syazwina Roselan	141
Chapter 25 Green Nanotechnology using SEM and AFM	147
A.G.E. Sutjipto and R. Muhida	
Chapter 26 The effect of Cobalt addition on structural and magnetic properties of electrodeposited Iron-Platinum nanocrystalline thin films	155
Seoh Hian Teh ¹ , Iskandar Idris Yaacob	
Chapter 27 Mechanochemical Synthesis of CeO ₂ Nanopowder using Planetary Ball Milling <i>Iskandar I. Yaacob</i>	163
Chapter 28 A Study on Double Junction Zinc Based/Polymer Thin Film Solar Cell	170
S. A. Mohamad and A. K. Arof Chapter 29	176
A Voltammetric Study of Zinc Telluride Thin Films Prepared for Photovoltaic Applications	170
S. A. Mohamad and A. K. Arof	
Chapter 30 Electrodeposition Technique for ZnO Semiconductor Thin Films Fabrication	181
S. A. Mohamad	
Chapter 31 Electroless Nickel Based Coatings From Solution Containing Sodium Hypophosphite	186
Suryanto	

Chapter 32 Aluminum Spray Coating for Corrosion Resistance of Steel		192
Chapter 33 Electrodeposition of Alloys	Suryanto	198
Chapter 34 Corrosion Behavior of Duplex Stainless Steel in Sea Water	Suryanto	204
Chapter 35 Cathodic Protection of Underground Pipes	Suryanto	210

Suryanto

Cathodic Protection of Underground Pipes

Suryanto

Faculty of Engineering – International Islamic University Malaysia

: surya@iium.edu.my;

Keywords: Cathodic Protection, Underground Pipe, Corrosion Protection

Abstract: Corrosion in aqueous solutions is an electrochemical process where anodic and cathodic reactions occur simultaneously. No net overall charge builds up on the metal as a result of corrosion since the rate of the anodic and cathodic reactions are equal. If reactions anodic and cathodic occur simultaneously in a piece of metal, the rate of these two reactions can be altered by withdrawing electrons or supplying additional electrons to the piece of metal. It is an established principle that if a change occurs in one of the factors under which a system is in equilibrium, the system will tend to adjust itself so as to eliminate, as far as possible, the effect of that change. Thus, if we withdraw electrons from the piece of metal the rate of anodic reaction will increase and the dissolution of metal will increase, whereas reduction reaction will decrease. Conversely, if we supply additional electrons from an external source to the piece of metal, anodic reaction will decrease to give reduced corrosion and cathodic reaction will increase. The latter case will apply to cathodic protection. Thus, to prevent corrosion, continue supplying electrons to the metal from an external source is needed to satisfy the requirements of the cathodic reaction. Cathodic protection may be achieved in either by the use of an impressed current from an electrical source, or by the use of sacrificial anodes. Generally, sacrificial anode schemes have found favour for small wellcoated low-current demand structures or for localised protection, while impressed-current schemes being utilized for large complex structures which may be bare or poorly coated.

Introduction

Development of cathodic protection systems was made in to meet the requirements of oil and natural gas industry which wanted to benefit from the advantages of using thin-walled steel pipes for underground transmission. Cathodic protection can, in principle, be applied to any metallic structure in contact with a bulk electrolyte. In practice, its main use is to protect steel structures buried in soil or immersed in water. It cannot be used to prevent atmospheric corrosion.

Structures commonly protected are the exterior surfaces of pipelines, ships' hulls, jetties, foundation piling, and offshore platforms. Cathodic protection is also used on the interior surfaces of water-storage tanks and water-circulating systems. However, since an external anode will seldom spread the protection for a distance of more than two or three pipe-diameters, the method is not suitable for the protection of small-bore pipework.