CONTEMPORARY METALLIC MATERIALS

Md Abdul Maleque
Iskandar Idris Yaacob
Zahurin Halim

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
CONTemporary
METALLIC MATERIALS

Edited by:
Md Abdul Maleque
Iskandar Idris Yaacob
Zahurin Halim

IIUM Press
Table of Content

Chapter 1
Upgrading of Laterite Ore by Reduction and Leaching
\textit{Hadi Purwanto and Pramusanto}
\pagecolor{white} 1

Chapter 2
Upgrading of Iron Sand by Magnetic Concentration and Reduction
\textit{Muta’alim, Hadi Purwanto, Nuryadi Saleh and Pramusanto}
\pagecolor{white} 7

Chapter 3
Microstructure and Mechanical Properties of Neutron Transmutation Doped of Silicon under Cf-252 Neutron Bombardment
\textit{Agus Geter Edy Sutjipto, Roslan Yahya}
\pagecolor{white} 16

Chapter 4
Effect of Stabilizer Addition on Crystal Formation of Zirconia Synthesize From Zircon Sand
\textit{Yuhelda Dahlan Hadi Purwanto, Nuryadi Saleh and Pramusanto}
\pagecolor{white} 20

Chapter 5
Upgrading of Iron-rich Laterite Ore Using Reverse Flotation
\textit{Hadi Purwanto, Mutaalim, Yuhelda Dahlan, Nuryadi Saleh and Pramusanto}
\pagecolor{white} 27

Chapter 6
Influences of Additives on Copper Film Quality and Gap Filling Capability of Plating Process
\textit{Shahjahan Mridha and Law Shao Beng}
\pagecolor{white} 34

Chapter 7
Grain Refining in AISI 430 Ferritic Stainless Steel Welds by Addition of Metal Powder
\textit{Shahjahan Mridha and Muhammed Olawale Hakeem Amuda}
\pagecolor{white} 41

Chapter 8
Grain Refinement Practices in Ferritic Stainless Steel Welds
\textit{Muhammed Olawale Hakeem Anuda and Shahjahan Mridha}
\pagecolor{white} 48

Chapter 9
Alloy Coating on Steel Surfaces by Melt Synthesis of Elemental Metal Powders
\textit{Shahjahan Mridha}
\pagecolor{white} 53
Chapter 10
Synthesis And Characterization of Lithium Manganese Copper Oxides for use in Lithium Rechargeable Cells

I.I. Yaacob, N. Kamarulzaman, and W.J. Basirun

Chapter 11
Influence of Grain Size on Magnetic Properties of Electroplated NiFe

Yusrini Marita and Iskandar Idris Yaacob

Chapter 12
Composite Coating on Titanium Alloy Using High Power Laser

Shahjahan Mridha

Chapter 13
The Tribological Behaviour of Al-Si Automotive Piston Material

Arifuzzaman and Md Abdul Maleque

Chapter 14
Conceptual Design of Folding Bicycle Frame with Light Weight Materials

Md Abdul Maleque and Mohd Nizam

Chapter 15
Reverse Engineering of Automotive Piston

Md Abdul Maleque and A. Arifuzzaman

Chapter 16
Recent Trend in Application of High Temperature Ferritic Fe-Cr Alloys in Power Plant

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 17
Measurement of Oxygen Permeability in Bulk Alloys by Internal Oxidation of Dilute Constituent

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 18
Recent Trend on Application of High Temperature Ferritic Fe-Cr Alloys in Solid Oxide Fuel Cells

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 19
Principle of Solid Electrolyte Oxygen Sensor

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 20
Surface Oxygen Potential on the Oxide Scale during High Temperature Oxidation of Fe-Cr Alloys at 1073 K

Mohd Hanafi Bin Ani and Raihan Othman
Chapter 21
Reverse Engineering for Automotive Fuel Tank
Mohd Hanafi Bin Ani and Raihan Othman

Chapter 22
The possibility of utilizing scanning electron microscope for materials characterization
Md Abdul Maleque and Atiqah Afzaluddin

Chapter 23
Piezoelectricity of Zinc Oxide Thin film as Source of Energy for Sensor Applications
Agus Geter Edy Sutjipto

Chapter 24
Study on Zinc Oxide Crystal Growth
Agus Geter Edy Sutjipto, Liyana Abdul Gafar and Nor Azyati Syazwina Roselan

Chapter 25
Green Nanotechnology using SEM and AFM
A.G.E. Sutjipto and R. Muhida

Chapter 26
The effect of Cobalt addition on structural and magnetic properties of electrodeposited Iron-Platinum nanocrystalline thin films
Seoh Hian Teh, Iskandar Idris Yaacob

Chapter 27
Mechanochemical Synthesis of CeO₂ Nanopowder using Planetary Ball Milling
Iskandar I. Yaacob

Chapter 28
A Study on Double Junction Zinc Based/Polymer Thin Film Solar Cell
S. A. Mohamad and A. K. Arof

Chapter 29
A Voltammetric Study of Zinc Telluride Thin Films Prepared for Photovoltaic Applications
S. A. Mohamad and A. K. Arof

Chapter 30
Electrodeposition Technique for ZnO Semiconductor Thin Films Fabrication
S. A. Mohamad

Chapter 31
Electroless Nickel Based Coatings From Solution Containing Sodium Hypophosphite
Suryanto
Chapter 32
Aluminum Spray Coating for Corrosion Resistance of Steel

Chapter 33
Electrodeposition of Alloys

Chapter 34
Corrosion Behavior of Duplex Stainless Steel in Sea Water

Chapter 35
Cathodic Protection of Underground Pipes
Electroless Nickel Based Coatings
From Solution Containing Sodium Hypophosphite

Suryanto
Faculty of Engineering – International Islamic University Malaysia
✉️: surya@iium.edu.my

Keywords: Electroless deposition, Nickel, Coating

Abstract: Electroless deposition is a valuable technique to deposit coatings with excellent thickness, wear and corrosion resistance. This technique can coat not only metallic materials but also non-metallic materials such as plastics and rubber. Coatings can be tailored by selecting the composition of the coating alloy to suit specific requirements. The application of these coatings is expanding fast. In the present chapter, an attempt has been made to discuss electroless coatings with respect to bath containing sodium hypophosphite, coating composition and properties. Discussion also extended to the characteristic of various electroless nickel-based coatings after heat treated at various temperatures.

Introduction
Electroless coating is a method of depositing metals or alloys by using chemical energy within the materials, known as a autocatalytic reduction method. By the controlled chemical reduction reaction, the electroless coating has emerged as one of the important method in surface engineering and metal finishing. Electroless coating has unique physicochemical and mechanical properties for which they are being used increasingly.

The advantage of using the autocatalytic reduction reaction is in maintaining overall uniformity of coating in composition and thickness which is independent of the thickness variations of the substrate. The other valuable properties are: excellent corrosion resistance, very good wear and abrasion resistance, high hardness, nanocrystalline and low coefficient of friction. Most applications of the electroless coating are based on their wear and corrosion resistance. However, the characteristic like high hardness and low coefficient of friction have a great potential in daily life applications.

Different alloys are coated for desired physical and mechanical properties. Several binary and ternary alloys have been deposited such as Ni–P [1], Ni–B [2], Co–P, Co–B [3], Ni–Co–P [4], Ni–W–P [5], and Fe–Sn–B, Fe–W–B, Fe–Mo–B [6]. Nickel turns out to be the single most widely coated element with phosphorous. Apart from nickel, many alloys contain at least one of the elements Co, Fe, Cu, and Au.

Deposition
Electroless alloy coatings are produced by the controlled chemical reduction of metallic ions onto a surface and the reaction continues as long as the surface remains in contact with the