Advanced Machining Process

Editors
Mohammad Yeakub Ali
AKM Nurul Amin
Erry Yulian Triblas Adesta

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Advanced Machining Process

Editors
Mohammad Yeakub Ali
AKM Nurul Amin
Erry Yulian Triblas Adesta

IIUM Press
Advanced Machining Process

Table of Contents

Preface ii
Acknowledgement iii
Copyright iv

PART 1: ELECTRO DISCHARGE MACHINING 1

Chapter 1 2
Tool Wear rate during Electrical Discharge Machining (EDM) with
Eccentric Electrode
Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma
Bin Mohd Isa

Chapter 2 7
Wear Ratio and Work Surface Finish during Electrical Discharge
Machining (EDM) with Eccentric Electrode
Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma
Bin Mohd Isa

Chapter 3 12
Role of Current, Voltage and Spark on-time on Electrode Material
Migration during EDM
Ahsan Ali Khan, Nurul Shima Mohd Noh

Chapter 4 18
A Study on Material Removal Rate during EDM with Tantalum
Carbide-Copper Compacted Electrode
Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad
Hambiyah and Mohd Faiz Bin Nazi Nadin

Chapter 5 23
Features of EDM of Mild Steel with Ta-Cu Powder Compacted
Electrodes
Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad
Hambiyah and Mohd Faiz Bin Nazi Nadin

Chapter 6 28
Relationship between Machining Variables and Process Characteristics
during Wire EDM
Ahsan Ali Khan, M. B. M. Ali and N. B. M. Shaffiar
Chapter 7
Influence of Machining Parameters on Surface Roughness during EDM of Mild Steel
Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali

Chapter 8
Machining of Ceramic Materials: A Review
Abdus Sabur, Md. Abdul Maleque and Mohammad Yeakub Ali

Chapter 9
Formation of Micro-cracks and Recast Layer during EDM of Mild Steel using Copper Electrodes
Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali

Chapter 10
Features of Electrode Wear during EDM of Mild Steel with TaC-Cu Powder Compacted Electrodes
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 11
Influence of Current, Spark On-time and Off-time on Electrode Wear during EDM of Mild Steel
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 12
A Comparative study on Work Surface Hardness EDMed by Ta-C Powder Compacted and Copper Electrodes
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 13
An Introduction to Electrical Discharge Machining
Ahsan Ali Khan and Mohammed Baba Ndaliman

Chapter 14
Developments in EDM Process Variables
Ahsan Ali Khan, Mohammed Baba Ndaliman and Mohammad Yeakub Ali
PART 2: MICROMACHINING ... 76

Chapter 15 77
Focused Ion Beam Micromachining: Technology and Application
Israd Hakim Jaafar, Nur Atiqah, Asfana Banu, Mohammad Yeakub Ali

Chapter 16 83
Finish Cut of Titanium Alloy using Micro Electro Discharge Milling
for Nano Surface Finish
Mohammad Yeakub Ali, Muhamad Faizal, Asfana Banu, and Nur Atikah

Chapter 17 89
Investigation of MRR for Finish Cut of Titanium Alloy using Micro
Electro Discharge Milling
Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu

Chapter 18 95
Investigation of TWR for Finish Cut of Titanium Alloy using Micro
Electro Discharge Milling
Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu

Chapter 19 101
Investigation of Chip Formation and Minimum Chip Thickness in
Micro/Meso Milling: Methodology and Design of Experiment
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 20 107
Micro/Meso Milling of Aluminium Alloy 1100: Analysis and
Modelling of Minimum Chip Thickness
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 21 113
Effect of Micro End Milling Tool Diameter on Minimum Chip
Thickness
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 22 119
Micro Wire Electrical Discharge Machining of Tungsten Carbide:
Methodology and Procedure
Mohammad Yeakub Ali, Ahmad Chaaban Elabtaah and Musah Jamal Alrefaie

Chapter 23 124
Micro Wire Electrical Discharge Machining of Tungsten Carbide:
Analysis of Surface Roughness
Mohammad Yeakub Ali, Ahmad Chaaban Elabtaah and Musah Jamal Alrefaie

Chapter 24 130
Micro Wire Electrical Discharge Machining of Tungsten Carbide:
Analysis of Material Removal Rate
Mohammad Yeakub Ali, Musah Jamal Alrefaie and Ahmad Chaaban Elabtaah

Chapter 25 136
Micro Electro Discharge Machining of Micro Pillar Array: Process
Chapter 25
Micro Electro Discharge Machining of Micro Pillar Array: Process Development
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza

Chapter 26
Micro Electro Discharge Machining of Micro Pillar Array: Analysis of Surface Finish
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza

Chapter 27
Micro Electro Discharge Machining of Micropillar Array: Analysis of Material Removal Rate
Mohammad Yeakub Ali, Nor Suriza and Wan Emira Azaty

Chapter 28
Vibration Issue in Micro End Milling
Mohammad Yeakub Ali, Muhamad Lutfi and Mohamad Ismail Fahmi

Chapter 29
Fabrication of Micro Filter by Electro Discharge Machining
Abdus Sabur and Mohammad Yeakub Ali
PART 3: PRECISION MACHINING .. 165

Chapter 30 166
High Speed Milling of Mould Steel using 1.5mm-diameter End-mills
Mohamed Konneh, Khairunnisa Ahmad and Rose Fazleen

Chapter 31 172
Precision Grinding of Silicon Carbide using 46 μm Grain Diamond Cup Wheel
Mohamed Konneh and Ahmad Fauzan

Chapter 32 178
Precision Grinding of Silicon Carbide using 76 μm Grain Diamond Cup Wheel
Mohamed Konneh and Mohd Shukur Zawawi

Chapter 33 184
Precision Grinding of Silicon Carbide using 107 μm Grain Diamond Cup Wheel
Mohamed Konneh and Mohd Fadzil

Chapter 34 190
Investigation of Surface Integrity during Precision Grinding of Silicon Carbide using Diamond Grinding Pins
Mohamed Konneh, Mohamad Lutfi and Mohamad Shahrilnizam

Chapter 35 196
A Comparative Study on Flank Wear and Work Surface Finish during High Speed Milling of Cast Iron with Different Carbide Tools
Ahsan Ali Khan, Zuraida Aman Nor Rasid and Izansmawati Yusof
Investigation of TWR for Finish Cut of Titanium Alloy using Micro Electro Discharge Milling

Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu
Faculty of Engineering, International Islamic University Malaysia
✉: mmyali@iiu.edu.my

Keywords: Tool wear rate (TWR), Titanium alloy, Micro EDM

Abstract. This project aims to investigate the finish cut of micro electro discharge milling for nano surface finish in response to Tool Wear Rate (TWR). From the ANOVA and S/N ratio analysis, the statistical models have been developed using L18 (2^4 x 2^3) Orthogonal Arrays design of experiment. The significant process parameters and the possible optimum solution of machining parameters to achieve minimum TWR were also being obtained. The optimum solution with combination of all machining parameters for minimum TWR by using Design Expert 7.1.5 is 0.899 or 89.99% desirable to get value of capacitance = 100 nF, gap voltage = 80 V and feed rate = 1 μm/sec, with optimized value TWR = 0.959 μg/min. Optimized machining parameters were used in verification experiments, where the response were found very closed to the predicted values.

Introduction

The process parameters in micro ED milling influence material removal rate (MRR), surface quality (SQ) and tool wear rate (TWR). The principle of micro ED milling is not directly applicable to micro die-sinking EDM. In micro die-sinking EDM, the occurrence of the high tool wear necessitates the use of multiple tools with increasing dimensions to produce the desired geometry and accuracy [1]. Even though micro ED milling also suffer with high tool wear, but the influence can be reduce by reduction of machining path per line to only few microns [2]. Also, there are other strategies such as Uniform Wear Method, tool path strategy developed to increase high accuracy for micro ED milling [3]. Therefore, micro ED milling is becoming a more economic alternative to die-sinking micro EDM. This research studied the significant process parameters of micro ED milling in response to TWR, optimal solutions of process parameters for multiple-response of TWR and to achieve nano surface finish for applications in MEMS (microelectromechanical systems) and other micro technology.

Fig. 1 Electrode shape changes on after machining

95