CONTEMPORARY METALLIC MATERIALS Md Abdul Maleque Iskandar Idris Yaacob Zahurin Halim **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA # CONTEMPORARY METALLIC MATERIALS Edited by: Md Abdul Maleque Iskandar Idris Yaacob Zahurin Halim ### Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data ISBN: 978-967-418-164-2 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by: HUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan # **Table of Content** | Chapter 1 | 1 | |--|----| | Upgrading of Laterite Ore by Reduction and Leaching Hadi Purwanto and Pramusanto | | | Chapter 2 Upgrading of Iron Sand by Magnetic Concentration and Reduction Muta'alim, Hadi Purwanto, Nuryadi Saleh and Pramusanto | 7 | | Chapter 3 Microstructure and Mechanical Properties of Neutron Transmutation Doped of Silicon under Cf-252 Neutron Bombardment Agus Geter Edy Sutjipto, Roslan Yahya | 16 | | Chapter4 Effect of Stabilizer Addition on Crystal Formation of Zirconia Synthesize From Zircon Sand | 20 | | Yuhelda Dahlan Hadi Purwanto, Nuryadi Saleh and Pramusanto | | | Chapter 5 Upgrading of Iron-rich Laterite Ore Using Reverse Flotation | 27 | | Hadi Purwanto, Mutaalim, Yuhelda Dahlan, Nuryadi Saleh and Pramusanto | | | Chapter 6 Influences of Additives on Copper Film Quality and Gap Filling Capability of Plating Process | 34 | | Shahjahan Mridha and Law Shao Beng | | | Chapter 7 Grain Refining in AISI 430 Ferritic Stainless Steel Welds by Addition of Metal Powder | 41 | | Shahjahan Mridha and Muhammed Olawale Hakeem Amuda | | | Chapter 8 Grain Refinement Practices in Ferritic Stainless Steel Welds | 48 | | Muhammed Olawale Hakeem Amudaand Shahjahan Mridha | | | Chapter 9 Alloy Coating on Steel Surfaces by Melt Synthesis of Elemental Metal Powders | 53 | | Shahjahan Mridha | | | Chapter 10 Synthesis And Characterization of Lithium Manganese Copper Oxides for use in Lithium Rechargeable Cells | 59 | |--|-----| | I.I. Yaacob, N. Kamarulzaman, and W.J. Basirun ^c | | | Chapter 11 Influence of Grain Size on Magnetic Properties of Electroplated NiFe | 65 | | Yusrini Marita and Iskandar Idris Yaacob | | | Chapter 12 Composite Coating on Titanium Alloy Using High Power Laser | 70 | | Shahjahan Mridha | | | Chapter 13 The Tribological Behaviour of Al-Si Automotive Piston Material Arifutzzaman and Md Abdul Maleque | 75 | | Chapter 14 Conceptual Design of Folding Bicycle Frame with Light Weight Materials Md Abdul Maleque and Mohd Nizam | 81 | | Chapter 15 Reverse Engineering of Automotive Piston Md Abdul Maleque and A. Arifutzzaman | 86 | | Chapter 16 Recent Trend in Application of High Temperature Ferritic Fe-Cr Alloys in Power Plant Mohd Hanafi Bin Ani and Raihan Othman | 92 | | Chapter 17 Measurement of Oxygen Permeability in Bulk Alloys by Internal Oxidation of Dilute Constituent | 98 | | Mohd Hanafi Bin Ani and Raihan Othman | | | Chapter 18 Recent Trend on Application of High Temperature Ferritic Fe-Cr Alloys in Solid Oxide Fuel Cells | 104 | | Mohd Hanafi Bin Ani and Raihan Othman | | | Chapter 19 Principle of Solid Electrolyte Oxygen Sensor <i>Mohd Hanafi Bin Ani and Raihan Othman</i> | 110 | | Chapter 20 Surface Oxygen Potential on the Oxide Scale during High Temperature Oxidation of Fe-Cr Alloys at 1073 K | 116 | | Mohd Hanafi Bin Ani and Raihan Othman | | | Mohd Hanafi Bin Ani and Raihan Othman Chapter 21 | 121 | |---|-----| | Reverse Engineering for Automotive Fuel Tank Md Abdul Maleque and Atiqah Afdzaluddin | | | Chapter 22 The possibility of utilizing scanning electron microscope for materials characterization | 127 | | Agus Geter Edy Sutjipto Chapter 23 | 135 | | Piezoelectricity of Zinc Oxide Thin film as Source of Energy for Sensor Applications | 133 | | Agus Geter Edy Sutjipto, Liyana Abdul Gafar and Nor Azyati Syazwina Roselan | | | Chapter 24 Study on Zinc Oxide Crystal Growth Agus Geter Edy Sutjipto, Liyana Abdul Gafar and Nor Azyati Syazwina Roselan | 141 | | Chapter 25 Green Nanotechnology using SEM and AFM | 147 | | A.G.E. Sutjipto and R. Muhida | | | Chapter 26 The effect of Cobalt addition on structural and magnetic properties of electrodeposited Iron-Platinum nanocrystalline thin films | 155 | | Seoh Hian Teh ¹ , Iskandar Idris Yaacob | | | Chapter 27 Mechanochemical Synthesis of CeO ₂ Nanopowder using Planetary Ball Milling <i>Iskandar I. Yaacob</i> | 163 | | Chapter 28 A Study on Double Junction Zinc Based/Polymer Thin Film Solar Cell | 170 | | S. A. Mohamad and A. K. Arof Chapter 29 | 176 | | A Voltammetric Study of Zinc Telluride Thin Films Prepared for Photovoltaic Applications | 170 | | S. A. Mohamad and A. K. Arof | | | Chapter 30 Electrodeposition Technique for ZnO Semiconductor Thin Films Fabrication | 181 | | S. A. Mohamad | | | Chapter 31 Electroless Nickel Based Coatings From Solution Containing Sodium Hypophosphite | 186 | | Suryanto | | | Chapter 32 Aluminum Spray Coating for Corrosion Resistance of Steel | | 192 | |--|----------|-----| | Chapter 33 Electrodeposition of Alloys | Suryanto | 198 | | Chapter 34 Corrosion Behavior of Duplex Stainless Steel in Sea Water | Suryanto | 204 | | Chapter 35 Cathodic Protection of Underground Pipes | Suryanto | 210 | Suryanto ## Study on Zinc Oxide Crystal Growth Agus Geter Edy Sutjipto, Liyana Abdul Gafar and Nor Azyati Syazwina Roselan Kulliyyah of Engineering – International Islamic University Malaysia : agus@iium.edu.my Keywords: Crystal growth, Zinc oxide, DC heating **Abstract:** Zinc oxide (ZnO) crystals for various applications could be created and as far manufacturing ultraviolet laser and photodetectors. Zinc oxide (ZnO) crystals are synthesized by applying electric current on ZnO ceramic bar which are made using powder metallurgy method. Scanning Electron Microscope (SEM) and X-Ray Diffractometer (XRD) were used to characterize ZnO sintered bars. Different types of crystals are produced such as polygonal, broken stick, flowers, trunks and many more when DC heating was applied until the sample of ZnO glowed and broke apart. The loads or pressure and heating method to the sample of ZnO affected the types of crystal growth. The optimum load was 3 metric tonne and would ease the ignition during DC heating due to less porosity of the samples. #### Introduction Zinc oxide (ZnO) is a unique material to be used as semiconducting, piezoelectric, solar cells, transparent electrodes and blue/UV light emitting devices. ZnO is most suitable applied for short wavelength optoelectronics devices because of wide band-gap (3.37 eV) compound semiconductor. ZnO has higher exciton binding energy (60 meV) compared to other semiconductor materials and its more resistant to radiation, and is multifunctional with uses in the areas as a piezoelectric, ferroelectric and ferromagnetic. Most of the researchers are focused on ZnSe and GaN materials for commercial interests when to development of short wavelength semiconductor diode lasers without consider of ZnO. In fact, ZnO has a large exciton binding energy of 60 meV, which in principle should allow efficient excitonic lasing mechanisms to operate at room temperature. Furthermore, it is a piezoelectric material with conducting properties. Due to these features, especially after the report about its ultraviolet laser emission, ZnO becomes the promising material for application in light emitting devices (LDs and LEDs) in short range. From this report, ZnO 99.9% powder is used to fabricate sintered bars by using powder metallurgy techniques through uniaxial compaction of the powder and sintering process. The bars fabricated will be joule heated by supplying direct current so that the crystals will grow. The crystals are very useful in the UV light emission and photo detection applications. The goal has focused to grow a variety form of crystals, most probably the novel ones by applying an optimum current density during heating the ZnO ceramic bars with and without the help of Cu tape. Experimental Materials