Advanced Machining Process

Editors
Mohammad Yeakub Ali
AKM Nurul Amin
Erry Yulian Triblas Adesta

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Advanced Machining Process

Editors
Mohammad Yeakub Ali
AKM Nurul Amin
Erry Yulian Triblas Adesta

IIUM Press
Advanced Machining Process

Table of Contents

Preface
Acknowledgement
Copyright

PART 1: ELECTRO DISCHARGE MACHINING1

Chapter 1
Tool Wear rate during Electrical Discharge Machining (EDM) with Eccentric Electrode
Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa

Chapter 2
Wear Ratio and Work Surface Finish during Electrical Discharge Machining (EDM) with Eccentric Electrode
Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa

Chapter 3
Role of Current, Voltage and Spark on-time on Electrode Material Migration during EDM
Ahsan Ali Khan, Nurul Shima Mohd Noh

Chapter 4
A Study on Material Removal Rate during EDM with Tantalum Carbide-Copper Compacted Electrode
Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and Mohd Faiz Bin Nazi Nadin

Chapter 5
Features of EDM of Mild Steel with Ta-Cu Powder Compacted Electrodes
Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and Mohd Faiz Bin Nazi Nadin

Chapter 6
Relationship between Machining Variables and Process Characteristics during Wire EDM
Ahsan Ali Khan, M. B. M. Ali and N. B. M. Shaffiar
Chapter 7
Influence of Machining Parameters on Surface Roughness during EDM of Mild Steel
Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali

Chapter 8
Machining of Ceramic Materials: A Review
Abdus Sabur, Md. Abdul Maleque and Mohammad Yeakub Ali

Chapter 9
Formation of Micro-cracks and Recast Layer during EDM of Mild Steel using Copper Electrodes
Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali

Chapter 10
Features of Electrode Wear during EDM of Mild Steel with TaC-Cu Powder Compacted Electrodes
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 11
Influence of Current, Spark On-time and Off-time on Electrode Wear during EDM of Mild Steel
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 12
A Comparative study on Work Surface Hardness EDMed by Ta-C Powder Compacted and Copper Electrodes
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah

Chapter 13
An Introduction to Electrical Discharge Machining
Ahsan Ali Khan and Mohammed Baba Ndalian

Chapter 14
Developments in EDM Process Variables
Ahsan Ali Khan, Mohammed Baba Ndalian and Mohammad Yeakub Ali
PART 2: MICROMACHINING ... 76

Chapter 15 77
Focused Ion Beam Micromachining: Technology and Application
Israd Hakim Jaafar, Nur Atiqah, Asfana Bamu, Mohammad Yeakub Ali

Chapter 16 83
Finish Cut of Titanium Alloy using Micro Electro Discharge Milling
for Nano Surface Finish
Mohammad Yeakub Ali, Muhamad Faizal, Asfana Bamu, and Nur Atikah

Chapter 17 89
Investigation of MRR for Finish Cut of Titanium Alloy using Micro
Electro Discharge Milling
Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Bamu

Chapter 18 95
Investigation of TWR for Finish Cut of Titanium Alloy using Micro
Electro Discharge Milling
Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Bamu

Chapter 19 101
Investigation of Chip Formation and Minimum Chip Thickness in
Micro/Meso Milling: Methodology and Design of Experiment
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 20 107
Micro/Meso Milling of Aluminium Alloy 1100: Analysis and
Modelling of Minimum Chip Thickness
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 21 113
Effect of Micro End Milling Tool Diameter on Minimum Chip
Thickness
Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki

Chapter 22 119
Micro Wire Electrical Discharge Machining of Tungsten Carbide:
Methodology and Procedure
Mohammad Yeakub Ali, Ahmad Chaaban Elabtahe and Musah Jamal Alrefaie

Chapter 23 124
Micro Wire Electrical Discharge Machining of Tungsten Carbide:
Analysis of Surface Roughness
Mohammad Yeakub Ali, Ahmad Chaaban Elabtahe and Musah Jamal Alrefaie

Chapter 24 130
Micro Wire Electrical Discharge Machining of Tungsten Carbide:
Analysis of Material Removal Rate
Mohammad Yeakub Ali, Musah Jamal Alrefaie and Ahmad Chaaban Elabtahe

Chapter 25 136
Micro Electro Discharge Machining of Micro Pillar Array: Process
Chapter 25
Micro Electro Discharge Machining of Micro Pillar Array: Process Development
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza

Chapter 26
Micro Electro Discharge Machining of Micro Pillar Array: Analysis of Surface Finish
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza

Chapter 27
Micro Electro Discharge Machining of Micropillar Array: Analysis of Material Removal Rate
Mohammad Yeakub Ali, Nor Suriza and Wan Emira Azaty

Chapter 28
Vibration Issue in Micro End Milling
Mohammad Yeakub Ali, Muhamad Lutfi and Mohamad Ismail Fahmi

Chapter 29
Fabrication of Micro Filter by Electro Discharge Machining
Abdus Sabur and Mohammad Yeakub Ali
PART 3: PRECISION MACHINING .. 165

Chapter 30
High Speed Milling of Mould Steel using 1.5mm-diameter End-mills
Mohamed Konneh, Khairunnisa Ahmad and Rose Fazleen

Chapter 31
Precision Grinding of Silicon Carbide using 46 μm Grain Diamond Cup Wheel
Mohamed Konneh and Ahmad Fauzan

Chapter 32
Precision Grinding of Silicon Carbide using 76 μm Grain Diamond Cup Wheel
Mohamed Konneh and Mohd Shukur Zawawi

Chapter 33
Precision Grinding of Silicon Carbide using 107 μm Grain Diamond Cup Wheel
Mohamed Konneh and Mohd Fadzil

Chapter 34
Investigation of Surface Integrity during Precision Grinding of Silicon Carbide using Diamond Grinding Pins
Mohamed Konneh, Mohamad Lutfi and Mohamad Shahrilnizam

Chapter 35
A Comparative Study on Flank Wear and Work Surface Finish during High Speed Milling of Cast Iron with Different Carbide Tools
Ahsan Ali Khan, Zuraida Aman Nor Rasid and Izanawati Yusof
Chapter 15

Focused Ion Beam Micromachining: Technology and Application

Israd Hakim Jaafar, Nur Atiqah Asflana Banu, Mohammad Yeakub Ali
Department of Manufacturing and Materials Engineering
Faculty of Engineering – International Islamic University Malaysia
E-mail: israd@iium.edu.my

Keywords: FIB; Focused ion beam; Micromachining; Micromilling

Abstract. Fabrication of micro and nanoscale components are in high demand for various applications in diversified fields that include automotive, electronics, communication, medicine, environment, and biotechnology and engineering. Focused ion beam (FIB) machining is one of the techniques for microfabrication of micro devices. This paper presents a basic review of FIB machining technology, its important component systems, as well as the fundamentals of imaging, milling (etching) and deposition techniques. The application of FIB in microtechnology inspection, microtools fabrication and tunnelling gap milling is also presented.

Introduction

Focused ion beams (FIB) have been introduced to investigate the chemical and isotopic composition of materials since the 1960s [1]. In modern technology, the FIB is an extremely vital tool for semiconductor device manufacturing. It is also used to analyze the failure of a tool and design work, cross-sectioning of devices, maskless implantation and ion beam assisted etching [2]. FIB also has sputtering capability that can be used for machining of materials or tools at the micro- or nano-scales [1, 2]. The technology has also proven to be useful in fabricating microtools for microlathe and micromilling applications. In comparison to traditional techniques such as X-ray lithography or UV lithography which are intermediate operations used primarily in creating micro- to nano-scale features on silicon substrates, FIB is a high resolution technique that is able to write directly on any conductive substrates. FIB is able to machine high aspect ratio micro- to nano- features, whereby almost any geometry can be patterned in a single step. Furthermore, the FIB-patterned surface can be used as master stamps for subsequent soft lithography operations [1, 3]. The objective of this paper is to present an overview of the FIB system and the working principal as well as the application.

Focused Ion Beam System

In FIB, an ion beam with specific intensity and diameter is directed to the substrate material for micro or nano fabrication processes [2]. Figure 1 shows the most important components in an FIB system: