CONTEMPORARY METALLIC MATERIALS Md Abdul Maleque Iskandar Idris Yaacob Zahurin Halim **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA # CONTEMPORARY METALLIC MATERIALS Edited by: Md Abdul Maleque Iskandar Idris Yaacob Zahurin Halim #### Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data ISBN: 978-967-418-164-2 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by: HUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan ### **Table of Content** | Chapter 1 | 1 | |--|----| | Upgrading of Laterite Ore by Reduction and Leaching Hadi Purwanto and Pramusanto | | | Chapter 2 Upgrading of Iron Sand by Magnetic Concentration and Reduction Muta'alim, Hadi Purwanto, Nuryadi Saleh and Pramusanto | 7 | | Chapter 3 Microstructure and Mechanical Properties of Neutron Transmutation Doped of Silicon under Cf-252 Neutron Bombardment Agus Geter Edy Sutjipto, Roslan Yahya | 16 | | Chapter4 Effect of Stabilizer Addition on Crystal Formation of Zirconia Synthesize From Zircon Sand | 20 | | Yuhelda Dahlan Hadi Purwanto, Nuryadi Saleh and Pramusanto | | | Chapter 5 Upgrading of Iron-rich Laterite Ore Using Reverse Flotation | 27 | | Hadi Purwanto, Mutaalim, Yuhelda Dahlan, Nuryadi Saleh and Pramusanto | | | Chapter 6 Influences of Additives on Copper Film Quality and Gap Filling Capability of Plating Process | 34 | | Shahjahan Mridha and Law Shao Beng | | | Chapter 7 Grain Refining in AISI 430 Ferritic Stainless Steel Welds by Addition of Metal Powder | 41 | | Shahjahan Mridha and Muhammed Olawale Hakeem Amuda | | | Chapter 8 Grain Refinement Practices in Ferritic Stainless Steel Welds | 48 | | Muhammed Olawale Hakeem Amudaand Shahjahan Mridha | | | Chapter 9 Alloy Coating on Steel Surfaces by Melt Synthesis of Elemental Metal Powders | 53 | | Shahjahan Mridha | | | Chapter 10 Synthesis And Characterization of Lithium Manganese Copper Oxides for use in Lithium Rechargeable Cells | 59 | |--|-----| | I.I. Yaacob, N. Kamarulzaman, and W.J. Basirun ^c | | | Chapter 11 Influence of Grain Size on Magnetic Properties of Electroplated NiFe | 65 | | Yusrini Marita and Iskandar Idris Yaacob | | | Chapter 12 Composite Coating on Titanium Alloy Using High Power Laser | 70 | | Shahjahan Mridha | | | Chapter 13 The Tribological Behaviour of Al-Si Automotive Piston Material Arifutzzaman and Md Abdul Maleque | 75 | | Chapter 14 Conceptual Design of Folding Bicycle Frame with Light Weight Materials Md Abdul Maleque and Mohd Nizam | 81 | | Chapter 15 Reverse Engineering of Automotive Piston Md Abdul Maleque and A. Arifutzzaman | 86 | | Chapter 16 Recent Trend in Application of High Temperature Ferritic Fe-Cr Alloys in Power Plant Mohd Hanafi Bin Ani and Raihan Othman | 92 | | Chapter 17 Measurement of Oxygen Permeability in Bulk Alloys by Internal Oxidation of Dilute Constituent | 98 | | Mohd Hanafi Bin Ani and Raihan Othman | | | Chapter 18 Recent Trend on Application of High Temperature Ferritic Fe-Cr Alloys in Solid Oxide Fuel Cells | 104 | | Mohd Hanafi Bin Ani and Raihan Othman | | | Chapter 19 Principle of Solid Electrolyte Oxygen Sensor <i>Mohd Hanafi Bin Ani and Raihan Othman</i> | 110 | | Chapter 20 Surface Oxygen Potential on the Oxide Scale during High Temperature Oxidation of Fe-Cr Alloys at 1073 K | 116 | | Mohd Hanafi Bin Ani and Raihan Othman | | | Mohd Hanafi Bin Ani and Raihan Othman Chapter 21 | 121 | |---|-----| | Reverse Engineering for Automotive Fuel Tank Md Abdul Maleque and Atiqah Afdzaluddin | | | Chapter 22 The possibility of utilizing scanning electron microscope for materials characterization | 127 | | Agus Geter Edy Sutjipto Chapter 23 | 135 | | Piezoelectricity of Zinc Oxide Thin film as Source of Energy for Sensor Applications | 133 | | Agus Geter Edy Sutjipto, Liyana Abdul Gafar and Nor Azyati Syazwina Roselan | | | Chapter 24 Study on Zinc Oxide Crystal Growth Agus Geter Edy Sutjipto, Liyana Abdul Gafar and Nor Azyati Syazwina Roselan | 141 | | Chapter 25 Green Nanotechnology using SEM and AFM | 147 | | A.G.E. Sutjipto and R. Muhida | | | Chapter 26 The effect of Cobalt addition on structural and magnetic properties of electrodeposited Iron-Platinum nanocrystalline thin films | 155 | | Seoh Hian Teh ¹ , Iskandar Idris Yaacob | | | Chapter 27 Mechanochemical Synthesis of CeO ₂ Nanopowder using Planetary Ball Milling <i>Iskandar I. Yaacob</i> | 163 | | Chapter 28 A Study on Double Junction Zinc Based/Polymer Thin Film Solar Cell | 170 | | S. A. Mohamad and A. K. Arof Chapter 29 | 176 | | A Voltammetric Study of Zinc Telluride Thin Films Prepared for Photovoltaic Applications | 170 | | S. A. Mohamad and A. K. Arof | | | Chapter 30 Electrodeposition Technique for ZnO Semiconductor Thin Films Fabrication | 181 | | S. A. Mohamad | | | Chapter 31 Electroless Nickel Based Coatings From Solution Containing Sodium Hypophosphite | 186 | | Suryanto | | | Chapter 32 Aluminum Spray Coating for Corrosion Resistance of Steel | | 192 | |--|----------|-----| | Chapter 33 Electrodeposition of Alloys | Suryanto | 198 | | Chapter 34 Corrosion Behavior of Duplex Stainless Steel in Sea Water | Suryanto | 204 | | Chapter 35 Cathodic Protection of Underground Pipes | Suryanto | 210 | Suryanto ## The possibility of utilizing scanning electron microscope for materials characterization Agus Geter Edy Sutjipto, Kulliyyah of Engineering – International Islamic University Malaysia ⊠ : agus : : :um.edu.my Keywords: MgO, surface breakdown, SEM, charging Abstract: This chapter introduces the use of a scanning electron microscope (SEM) to evaluate the insulation property of insulators under electron bombardment. An SEM may be used not only to observe a surface image but also to provide a fine electron beam for charging an uncoated-insulator surface at once. The distribution of electric field created by the surface charging can be developed by a simple model. The increase of electric field at the surface may exceed a critical value and a surface breakdown/flashover can occur. An insulation property is evaluated by varying the extended period of charging/electron bombardment which is needed to initiate a treeing-formation (hereinafter time to flashover treeing/TTF). In this chapter, under a certain SEM operating voltage and magnification, varying SiO₂ addition into a high purity MgO has resulted in different TTF. Therefore, this method can be used to evaluate the insulation property of insulators those are exposed in electron beam environment. #### Introduction The ability of insulators to withstand a high voltage is of great importance in modern technology. The phenomenon involves surface charging, discharging and flashover (dielectric breakdown), resulting the instrument damage and material degradation. Flashover phenomenon has been studied for many years and it is believed that a flashover is initiated from triple junction of metal, insulator and vacuum [1]. A number of experimental [2,3] and theoreritical works [4,5] stressed the leading role of the surface charge accumulation on the flashover. Electron bombardment is often used to make charge accumulation on the surface of insulator. Electrons produced in an SEM are possible to be controlled in their parameters: the implantation depth and the dose rate by adjusting, respectively, the primary beam energy E_0 and the primary beam current I_0 . The use of an SEM for investigating surface charging and discharging is reported somewhere [4]. Subsequent breakdown has been observed by measuring secondary electron and specimen current. It should be emphasized that breakdown is confined near the dielectric (subsurface) and is not dielectric to metal or metal to metal. The incubation of an accumulated charge at submerged layer until occurring discharge (breakdown) was used to evaluate insulation property in space craft dielectrics (i.e. Kapton, Milar, and Teflon).