CONTEMPORARY METALLIC MATERIALS Md Abdul Maleque Iskandar Idris Yaacob Zahurin Halim **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA # CONTEMPORARY METALLIC MATERIALS Edited by: Md Abdul Maleque Iskandar Idris Yaacob Zahurin Halim ### Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data ISBN: 978-967-418-164-2 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by: HUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan # **Table of Content** | Chapter 1 | 1 | |--|----| | Upgrading of Laterite Ore by Reduction and Leaching Hadi Purwanto and Pramusanto | | | Chapter 2 Upgrading of Iron Sand by Magnetic Concentration and Reduction Muta'alim, Hadi Purwanto, Nuryadi Saleh and Pramusanto | 7 | | Chapter 3 Microstructure and Mechanical Properties of Neutron Transmutation Doped of Silicon under Cf-252 Neutron Bombardment Agus Geter Edy Sutjipto, Roslan Yahya | 16 | | Chapter4 Effect of Stabilizer Addition on Crystal Formation of Zirconia Synthesize From Zircon Sand | 20 | | Yuhelda Dahlan Hadi Purwanto, Nuryadi Saleh and Pramusanto | | | Chapter 5 Upgrading of Iron-rich Laterite Ore Using Reverse Flotation | 27 | | Hadi Purwanto, Mutaalim, Yuhelda Dahlan, Nuryadi Saleh and Pramusanto | | | Chapter 6 Influences of Additives on Copper Film Quality and Gap Filling Capability of Plating Process | 34 | | Shahjahan Mridha and Law Shao Beng | | | Chapter 7 Grain Refining in AISI 430 Ferritic Stainless Steel Welds by Addition of Metal Powder | 41 | | Shahjahan Mridha and Muhammed Olawale Hakeem Amuda | | | Chapter 8 Grain Refinement Practices in Ferritic Stainless Steel Welds | 48 | | Muhammed Olawale Hakeem Amudaand Shahjahan Mridha | | | Chapter 9 Alloy Coating on Steel Surfaces by Melt Synthesis of Elemental Metal Powders | 53 | | Shahjahan Mridha | | | Chapter 10 Synthesis And Characterization of Lithium Manganese Copper Oxides for use in Lithium Rechargeable Cells | 59 | |--|-----| | I.I. Yaacob, N. Kamarulzaman, and W.J. Basirun ^c | | | Chapter 11 Influence of Grain Size on Magnetic Properties of Electroplated NiFe | 65 | | Yusrini Marita and Iskandar Idris Yaacob | | | Chapter 12 Composite Coating on Titanium Alloy Using High Power Laser | 70 | | Shahjahan Mridha | | | Chapter 13 The Tribological Behaviour of Al-Si Automotive Piston Material Arifutzzaman and Md Abdul Maleque | 75 | | Chapter 14 Conceptual Design of Folding Bicycle Frame with Light Weight Materials Md Abdul Maleque and Mohd Nizam | 81 | | Chapter 15 Reverse Engineering of Automotive Piston Md Abdul Maleque and A. Arifutzzaman | 86 | | Chapter 16 Recent Trend in Application of High Temperature Ferritic Fe-Cr Alloys in Power Plant Mohd Hanafi Bin Ani and Raihan Othman | 92 | | Chapter 17 Measurement of Oxygen Permeability in Bulk Alloys by Internal Oxidation of Dilute Constituent | 98 | | Mohd Hanafi Bin Ani and Raihan Othman | | | Chapter 18 Recent Trend on Application of High Temperature Ferritic Fe-Cr Alloys in Solid Oxide Fuel Cells | 104 | | Mohd Hanafi Bin Ani and Raihan Othman | | | Chapter 19 Principle of Solid Electrolyte Oxygen Sensor <i>Mohd Hanafi Bin Ani and Raihan Othman</i> | 110 | | Chapter 20 Surface Oxygen Potential on the Oxide Scale during High Temperature Oxidation of Fe-Cr Alloys at 1073 K | 116 | | Mohd Hanafi Bin Ani and Raihan Othman | | | Mohd Hanafi Bin Ani and Raihan Othman Chapter 21 | 121 | |---|-----| | Reverse Engineering for Automotive Fuel Tank Md Abdul Maleque and Atiqah Afdzaluddin | | | Chapter 22 The possibility of utilizing scanning electron microscope for materials characterization | 127 | | Agus Geter Edy Sutjipto Chapter 23 | 135 | | Piezoelectricity of Zinc Oxide Thin film as Source of Energy for Sensor Applications | 133 | | Agus Geter Edy Sutjipto, Liyana Abdul Gafar and Nor Azyati Syazwina Roselan | | | Chapter 24 Study on Zinc Oxide Crystal Growth Agus Geter Edy Sutjipto, Liyana Abdul Gafar and Nor Azyati Syazwina Roselan | 141 | | Chapter 25 Green Nanotechnology using SEM and AFM | 147 | | A.G.E. Sutjipto and R. Muhida | | | Chapter 26 The effect of Cobalt addition on structural and magnetic properties of electrodeposited Iron-Platinum nanocrystalline thin films | 155 | | Seoh Hian Teh ¹ , Iskandar Idris Yaacob | | | Chapter 27 Mechanochemical Synthesis of CeO ₂ Nanopowder using Planetary Ball Milling <i>Iskandar I. Yaacob</i> | 163 | | Chapter 28 A Study on Double Junction Zinc Based/Polymer Thin Film Solar Cell | 170 | | S. A. Mohamad and A. K. Arof Chapter 29 | 176 | | A Voltammetric Study of Zinc Telluride Thin Films Prepared for Photovoltaic Applications | 170 | | S. A. Mohamad and A. K. Arof | | | Chapter 30 Electrodeposition Technique for ZnO Semiconductor Thin Films Fabrication | 181 | | S. A. Mohamad | | | Chapter 31 Electroless Nickel Based Coatings From Solution Containing Sodium Hypophosphite | 186 | | Suryanto | | | Chapter 32 Aluminum Spray Coating for Corrosion Resistance of Steel | | 192 | |--|----------|-----| | Chapter 33 Electrodeposition of Alloys | Suryanto | 198 | | Chapter 34 Corrosion Behavior of Duplex Stainless Steel in Sea Water | Suryanto | 204 | | Chapter 35 Cathodic Protection of Underground Pipes | Suryanto | 210 | Suryanto ## **Reverse Engineering for Automotive Fuel Tank** Md Abdul Maleque and Atiqah Afdzaluddin Faculty of Engineering – International Islamic University Malaysia :atiqahafdzaluddin@yahoo.com; maleque@iium.edu.my **Keywords:** Fuel tank, Reverse engineering, Morphology, Tensile, Ferritic steel. Abstract. There is a current demand of using lightweight material or replacing heavy material by lighter material especially in the automotive sector. An increasing the weight of the car, susceptible to the corrosion environment, produce more carbon dioxide and monoxide emission, these are criteria that need to overcome with the usage of metal fuel tank. This research deals with reverse engineering approach to study, examine and analyze the existence material used for the fabrication of local automotive car (PROTON) fuel tank. A series of morphology tests were performed to characterize the materials using XRD, Optical Microscopy and EDX. The mechanical testing includes hardness and tensile testing was also carried out in order to find the mechanical properties of the fuel tank material. The study shows the current fuel tank material ferritic steel fuel Tank with tin-galvanized surface coating. Based on the current study and analysis of the material it is possible to propose and develop a better and lighter weight material which would be suitable for the design and fabrication of future cost effective automotive fuel tank. #### Introduction Steel used for automotive fuel tanks, or any automotive application for that matter, is low cost and has a relatively stable price history over long periods of time [1]. It is extremely competitive against alternate automotive materials, such as magnesium, aluminum and plastics [1, 2]. A fuel tank is manufactured by press-forming steel sheets of upper and lower parts with complicated shapes and seam welding the halves together. Various members for example an inlet tube, a fuel tube, a fuel return tube, a sub tank and a drain plug are fixed to a body of the fuel tank by welding, brazing or the like [3]. Steel sheet are press-formed to shapes upper and lower halves by complicated process accompanied with drawing and bulging. Due to the complicated press forming, a steel tank is often cracked at heavily worked parts [4]. There is a current demand of using lightweight material or replacing heavy material by lighter material especially in the automotive sector. It is only possible through research and development using a reverse engineering approach. Moreover, it is well known that fuel tank that is fabricated from steel material that is heavier than plastic tank [5, 6]. For that reason, this project was undertaken firstly to find the existing fuel tank material using reverse engineering approach to develop a fuel tank material in line with lighter weight and less cost especially composite material for the future fabrication of the fuel tank.