CONTEMPORARY METALLIC MATERIALS

Edited by:
Md Abdul Maleque
Iskandar Idris Yaacob
Zahurin Halim

IIUM Press
# Table of Content

**Chapter 1**  
Upgrading of Laterite Ore by Reduction and Leaching  
*Hadi Purwanto and Pramusanto*  
1

**Chapter 2**  
Upgrading of Iron Sand by Magnetic Concentration and Reduction  
*Muta'alim, Hadi Purwanto, Nuryadi Saleh and Pramusanto*  
7

**Chapter 3**  
Microstructure and Mechanical Properties of Neutron Transmutation Doped of Silicon under Cf-252 Neutron Bombardment  
*Agus Geter Edy Sutjipto, Roslan Yahya*  
16

**Chapter 4**  
Effect of Stabilizer Addition on Crystal Formation of Zirconia Synthesize From Zircon Sand  
*Yuhelda Dahlan Hadi Purwanto, Nuryadi Saleh and Pramusanto*  
20

**Chapter 5**  
Upgrading of Iron-rich Laterite Ore Using Reverse Flotation  
*Hadi Purwanto, Mutaalim, Yuhelda Dahlan, Nuryadi Saleh and Pramusanto*  
27

**Chapter 6**  
Influences of Additives on Copper Film Quality and Gap Filling Capability of Plating Process  
*Shahjahan Mridha and Law Shao Beng*  
34

**Chapter 7**  
Grain Refining in AISI 430 Ferritic Stainless Steel Welds by Addition of Metal Powder  
*Shahjahan Mridha and Muhammed Olawale Hakeem Amuda*  
41

**Chapter 8**  
Grain Refinement Practices in Ferritic Stainless Steel Welds  
*Muhammed Olawale Hakeem Amuda and Shahjahan Mridha*  
48

**Chapter 9**  
Alloy Coating on Steel Surfaces by Melt Synthesis of Elemental Metal Powders  
*Shahjahan Mridha*  
53
Chapter 10
Synthesis And Characterization of Lithium Manganese Copper Oxides for use in Lithium Rechargeable Cells

I.I. Yaacob, N. Kamarulzaman, and W.J. Basirun

Chapter 11
Influence of Grain Size on Magnetic Properties of Electroplated NiFe

Yusrini Marita and Iskandar Idris Yaacob

Chapter 12
Composite Coating on Titanium Alloy Using High Power Laser

Shahjahan Mridha

Chapter 13
The Tribological Behaviour of Al-Si Automotive Piston Material

Arifuzzaman and Md Abdul Maleque

Chapter 14
Conceptual Design of Folding Bicycle Frame with Light Weight Materials

Md Abdul Maleque and Mohd Nizam

Chapter 15
Reverse Engineering of Automotive Piston

Md Abdul Maleque and A. Arifuzzaman

Chapter 16
Recent Trend in Application of High Temperature Ferritic Fe-Cr Alloys in Power Plant

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 17
Measurement of Oxygen Permeability in Bulk Alloys by Internal Oxidation of Dilute Constituent

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 18
Recent Trend on Application of High Temperature Ferritic Fe-Cr Alloys in Solid Oxide Fuel Cells

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 19
Principle of Solid Electrolyte Oxygen Sensor

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 20
Surface Oxygen Potential on the Oxide Scale during High Temperature Oxidation of Fe-Cr Alloys at 1073 K

Mohd Hanafi Bin Ani and Raihan Othman
Chapter 21  
Reverse Engineering for Automotive Fuel Tank

Chapter 22  
The possibility of utilizing scanning electron microscope for materials characterization

Chapter 23  
Piezoelectricity of Zinc Oxide Thin film as Source of Energy for Sensor Applications

Chapter 24  
Study on Zinc Oxide Crystal Growth

Chapter 25  
Green Nanotechnology using SEM and AFM

Chapter 26  
The effect of Cobalt addition on structural and magnetic properties of electrodeposited Iron-Platinum nanocrystalline thin films

Chapter 27  
Mechanochemical Synthesis of CeO₂ Nanopowder using Planetary Ball Milling

Chapter 28  
A Study on Double Junction Zinc Based/Polymer Thin Film Solar Cell

Chapter 29  
A Voltammetric Study of Zinc Telluride Thin Films Prepared for Photovoltaic Applications

Chapter 30  
Electrodeposition Technique for ZnO Semiconductor Thin Films Fabrication

Chapter 31  
Electroless Nickel Based Coatings From Solution Containing Sodium Hypophosphite
Chapter 32
Aluminum Spray Coating for Corrosion Resistance of Steel

Chapter 33
Electrodeposition of Alloys

Chapter 34
Corrosion Behavior of Duplex Stainless Steel in Sea Water

Chapter 35
Cathodic Protection of Underground Pipes
Chapter 021

Reverse Engineering for Automotive Fuel Tank

Md Abdul Maleque and Atiqah Afdzaluddin
Faculty of Engineering – International Islamic University Malaysia
✉️: atiqahafdzaluddin@yahoo.com; maleque@iiium.edu.my

**Keywords:** Fuel tank, Reverse engineering, Morphology, Tensile, Ferritic steel.

**Abstract.** There is a current demand of using lightweight material or replacing heavy material by lighter material especially in the automotive sector. An increasing the weight of the car, susceptible to the corrosion environment, produce more carbon dioxide and monoxide emission, these are criteria that need to overcome with the usage of metal fuel tank. This research deals with reverse engineering approach to study, examine and analyze the existence material used for the fabrication of local automotive car (PROTON) fuel tank. A series of morphology tests were performed to characterize the materials using XRD, Optical Microscopy and EDX. The mechanical testing includes hardness and tensile testing was also carried out in order to find the mechanical properties of the fuel tank material. The study shows the current fuel tank material ferritic steel fuel Tank with tin-galvanized surface coating. Based on the current study and analysis of the material it is possible to propose and develop a better and lighter weight material which would be suitable for the design and fabrication of future cost effective automotive fuel tank.

**Introduction**

Steel used for automotive fuel tanks, or any automotive application for that matter, is low cost and has a relatively stable price history over long periods of time [1]. It is extremely competitive against alternate automotive materials, such as magnesium, aluminum and plastics [1, 2]. A fuel tank is manufactured by press-forming steel sheets of upper and lower parts with complicated shapes and seam welding the halves together. Various members for example an inlet tube, a fuel tube, a fuel return tube, a sub tank and a drain plug are fixed to a body of the fuel tank by welding, brazing or the like [3]. Steel sheet are press-formed to shapes upper and lower halves by complicated process accompanied with drawing and bulging. Due to the complicated press forming, a steel tank is often cracked at heavily worked parts [4].

There is a current demand of using lightweight material or replacing heavy material by lighter material especially in the automotive sector. It is only possible through research and development using a reverse engineering approach. Moreover, it is well known that fuel tank that is fabricated from steel material that is heavier than plastic tank [5, 6]. For that reason, this project was undertaken firstly to find the existing fuel tank material using reverse engineering approach to develop a fuel tank material in line with lighter weight and less cost especially composite material for the future fabrication of the fuel tank.