CONTEMPORARY METALLIC MATERIALS

Md Abdul Maleque
Iskandar Idris Yaacob
Zahurin Halim

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
CONTEMPORARY
METALLIC MATERIALS

Edited by:
Md Abdul Maleque
Iskandar Idris Yaacob
Zahurin Halim

IIUM Press
Table of Content

Chapter 1
Upgrading of Laterite Ore by Reduction and Leaching
Hadi Purwanto and Pramusanto
1

Chapter 2
Upgrading of Iron Sand by Magnetic Concentration and Reduction
Muta’alim, Hadi Purwanto, Nuryadi Saleh and Pramusanto
7

Chapter 3
Microstructure and Mechanical Properties of Neutron Transmutation Doped of Silicon under Cf-252 Neutron Bombardment
Agus Geter Edy Sutjipto, Roslan Yahya
16

Chapter 4
Effect of Stabilizer Addition on Crystal Formation of Zirconia Synthesize From Zircon Sand
Yuhelda Dahlan Hadi Purwanto, Nuryadi Saleh and Pramusanto
20

Chapter 5
Upgrading of Iron-rich Laterite Ore Using Reverse Flotation
Hadi Purwanto, Mutaalim, Yuhelda Dahlan, Nuryadi Saleh and Pramusanto
27

Chapter 6
Influences of Additives on Copper Film Quality and Gap Filling Capability of Plating Process
Shahjahan Mridha and Law Shao Beng
34

Chapter 7
Grain Refining in AISI 430 Ferritic Stainless Steel Welds by Addition of Metal Powder
Shahjahan Mridha and Muhammed Olawale Hakeem Amuda
41

Chapter 8
Grain Refinement Practices in Ferritic Stainless Steel Welds
Muhammed Olawale Hakeem Amudaand Shahjahan Mridha
48

Chapter 9
Alloy Coating on Steel Surfaces by Melt Synthesis of Elemental Metal Powders
Shahjahan Mridha
53
Chapter 10
Synthesis And Characterization of Lithium Manganese Copper Oxides for use in Lithium Rechargeable Cells
I.I. Yaacob, N. Kamarulzaman, and W.J. Basirun

Chapter 11
Influence of Grain Size on Magnetic Properties of Electroplated NiFe
Yusrini Marita and Iskandar Idris Yaacob

Chapter 12
Composite Coating on Titanium Alloy Using High Power Laser
Shahjahan Mridha

Chapter 13
The Tribological Behaviour of Al-Si Automotive Piston Material
Arifuzzaman and Md Abdul Maleque

Chapter 14
Conceptual Design of Folding Bicycle Frame with Light Weight Materials
Md Abdul Maleque and Mohd Nizam

Chapter 15
Reverse Engineering of Automotive Piston
Md Abdul Maleque and A. Arifuzzaman

Chapter 16
Recent Trend in Application of High Temperature Ferritic Fe-Cr Alloys in Power Plant
Mohd Hanafi Bin Ani and Raihan Othman

Chapter 17
Measurement of Oxygen Permeability in Bulk Alloys by Internal Oxidation of Dilute Constituent
Mohd Hanafi Bin Ani and Raihan Othman

Chapter 18
Recent Trend on Application of High Temperature Ferritic Fe-Cr Alloys in Solid Oxide Fuel Cells
Mohd Hanafi Bin Ani and Raihan Othman

Chapter 19
Principle of Solid Electrolyte Oxygen Sensor
Mohd Hanafi Bin Ani and Raihan Othman

Chapter 20
Surface Oxygen Potential on the Oxide Scale during High Temperature Oxidation of Fe-Cr Alloys at 1073 K
Mohd Hanafi Bin Ani and Raihan Othman
Chapter 21
Reverse Engineering for Automotive Fuel Tank
Md Abdul Maleque and Atiqah Afizaluddin

Chapter 22
The possibility of utilizing scanning electron microscope for materials characterization
Agus Geter Edy Sutjipto

Chapter 23
Piezoelectricity of Zinc Oxide Thin film as Source of Energy for Sensor Applications
Agus Geter Edy Sutjipto, Liyana Abdul Gafar and Nor Azyati Syazwina Roselan

Chapter 24
Study on Zinc Oxide Crystal Growth
Agus Geter Edy Sutjipto, Liyana Abdul Gafar and Nor Azyati Syazwina Roselan

Chapter 25
Green Nanotechnology using SEM and AFM
A.G.E. Sutjipto and R. Muhida

Chapter 26
The effect of Cobalt addition on structural and magnetic properties of electrodeposited Iron-Platinum nanocrystalline thin films
Seoh Hian Teh, Iskandar Idris Yaacob

Chapter 27
Mechanochemical Synthesis of CeO$_2$ Nanopowder using Planetary Ball Milling
Iskandar I. Yaacob

Chapter 28
A Study on Double Junction Zinc Based/Polymer Thin Film Solar Cell
S. A. Mohamad and A. K. Arof

Chapter 29
A Voltammetric Study of Zinc Telluride Thin Films Prepared for Photovoltaic Applications
S. A. Mohamad and A. K. Arof

Chapter 30
Electrodeposition Technique for ZnO Semiconductor Thin Films Fabrication
S. A. Mohamad

Chapter 31
Electroless Nickel Based Coatings From Solution Containing Sodium Hypophosphite
Suryanto
Chapter 32
Aluminum Spray Coating for Corrosion Resistance of Steel

Chapter 33
Electrodeposition of Alloys

Chapter 34
Corrosion Behavior of Duplex Stainless Steel in Sea Water

Chapter 35
Cathodic Protection of Underground Pipes
Surface Oxygen Potential on the Oxide Scale during High Temperature Oxidation of Fe-Cr Alloys at 1073 K

Mohd Hanafi Bin Ani and Raihan Othman
Faculty of Engineering – International Islamic University Malaysia
✉️: mhanafi@iium.edu.my

Keywords: Surface oxygen potential, CSZ oxygen sensor, High temperature oxidation.

Abstract: The surface oxygen potential on oxide scale during the high temperature oxidation at 1073 K has been measured using CSZ oxygen sensor. Formation of protective Cr₂O₃ scale gives surface oxygen potential almost identical with oxygen potential in oxidizing atmosphere. While the formation of non-protective iron oxides decrease the surface oxygen potential by few magnitude orders. It is successfully demonstrated that monitoring surface oxygen potential is beneficial to predict the formation of protective or non-protective oxide scale during the oxidation process.

Introduction
Boiler, super heater, reheater etc in fossil fuel steam power plant are exposed in severe oxidizing environments. It is common knowledge that the presence of water vapour accelerates the oxidation rate in those environments. Ferritic Fe-9 to 12 wt% Cr alloys is preferred materials for thick wall tube in power plant, due to their good rupture strength and thermal expansion. However, their oxidation behaviour in such environment is not well understood. Hanafi [1] has quantitatively clarified that the presence of water vapour increase the critical Cr concentration required in Fe-Cr alloy to establish protective Cr₂O₃ scale. Figure 20.1 shows the formation of internal oxide, external oxide (protective scale) and transition scale (mixed internal + external oxides) in dry and water vapour environment. The change of Cr concentration to form protective scale in dry and humid environments is probably due the change of surface oxygen potential. In this paper, calcia stabilized zirconia (CSZ) was applied as a solid electrolyte of high temperature oxygen sensor to monitor the oxygen potential during the oxidation process.

Figure 20.1: The type of oxide scale that forms on various Fe-Cr alloys at 1073 K [1].