CONTEMPORARY METALLIC MATERIALS

Md Abdul Maleque
Iskandar Idris Yaacob
Zahurin Halim

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
CONTEMPORARY METALLIC MATERIALS

Edited by:
Md Abdul Maleque
Iskandar Idris Yaacob
Zahurin Halim

IIUM Press
Table of Content

Chapter 1
Upgrading of Laterite Ore by Reduction and Leaching

Hadi Purwanto and Pramusanto

Chapter 2
Upgrading of Iron Sand by Magnetic Concentration and Reduction

Muta'alim, Hadi Purwanto, Nuryadi Saleh and Pramusanto

Chapter 3
Microstructure and Mechanical Properties of Neutron Transmutation Doped of Silicon under Cf-252 Neutron Bombardment

Agus Geter Edy Sutjipto, Roslan Yahya

Chapter 4
Effect of Stabilizer Addition on Crystal Formation of Zirconia Synthesize From Zircon Sand

Yuhelda Dahlan Hadi Purwanto, Nuryadi Saleh and Pramusanto

Chapter 5
Upgrading of Iron-rich Laterite Ore Using Reverse Flotation

Hadi Purwanto, Mutaalim, Yuhelda Dahlan, Nuryadi Saleh and Pramusanto

Chapter 6
Influences of Additives on Copper Film Quality and Gap Filling Capability of Plating Process

Shahjahan Mridha and Law Shao Beng

Chapter 7
Grain Refining in AISI 430 Ferritic Stainless Steel Welds by Addition of Metal Powder

Shahjahan Mridha and Muhammed Olawale Hakeem Amuda

Chapter 8
Grain Refinement Practices in Ferritic Stainless Steel Welds

Muhammed Olawale Hakeem Amuda and Shahjahan Mridha

Chapter 9
Alloy Coating on Steel Surfaces by Melt Synthesis of Elemental Metal Powders

Shahjahan Mridha
Chapter 10
Synthesis And Characterization of Lithium Manganese Copper Oxides for use in Lithium Rechargeable Cells

I.I. Yaacob, N. Kamarulzaman, and W.J. Basirun

Chapter 11
Influence of Grain Size on Magnetic Properties of Electroplated NiFe

Yusrini Marita and Iskandar Idris Yaacob

Chapter 12
Composite Coating on Titanium Alloy Using High Power Laser

Shahjahan Mridha

Chapter 13
The Tribological Behaviour of Al-Si Automotive Piston Material

Arifuzzaman and Md Abdul Maleque

Chapter 14
Conceptual Design of Folding Bicycle Frame with Light Weight Materials

Md Abdul Maleque and Mohd Nizam

Chapter 15
Reverse Engineering of Automotive Piston

Md Abdul Maleque and A. Arifuzzaman

Chapter 16
Recent Trend in Application of High Temperature Ferritic Fe-Cr Alloys in Power Plant

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 17
Measurement of Oxygen Permeability in Bulk Alloys by Internal Oxidation of Dilute Constituent

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 18
Recent Trend on Application of High Temperature Ferritic Fe-Cr Alloys in Solid Oxide Fuel Cells

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 19
Principle of Solid Electrolyte Oxygen Sensor

Mohd Hanafi Bin Ani and Raihan Othman

Chapter 20
Surface Oxygen Potential on the Oxide Scale during High Temperature Oxidation of Fe-Cr Alloys at 1073 K

Mohd Hanafi Bin Ani and Raihan Othman
Chapter 21
Reverse Engineering for Automotive Fuel Tank

Chapter 22
The possibility of utilizing scanning electron microscope for materials characterization

Chapter 23
Piezoelectricity of Zinc Oxide Thin film as Source of Energy for Sensor Applications

Chapter 24
Study on Zinc Oxide Crystal Growth

Chapter 25
Green Nanotechnology using SEM and AFM

Chapter 26
The effect of Cobalt addition on structural and magnetic properties of electrodeposited Iron-Platinum nanocrystalline thin films

Chapter 27
Mechanochemical Synthesis of CeO₂ Nanopowder using Planetary Ball Milling

Chapter 28
A Study on Double Junction Zinc Based/Polymer Thin Film Solar Cell

Chapter 29
A Voltammetric Study of Zinc Telluride Thin Films Prepared for Photovoltaic Applications

Chapter 30
Electrodeposition Technique for ZnO Semiconductor Thin Films Fabrication

Chapter 31
Electroless Nickel Based Coatings From Solution Containing Sodium Hypophosphite
Chapter 32
Aluminum Spray Coating for Corrosion Resistance of Steel

Chapter 33
Electrodeposition of Alloys

Chapter 34
Corrosion Behavior of Duplex Stainless Steel in Sea Water

Chapter 35
Cathodic Protection of Underground Pipes
Chapter 013

The Tribological Behaviour of Al-Si Automotive Piston Material

Arifutzzaman and Md Abdul Maleque
Department of Manufacturing and Materials Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
✉: arif.zaman@live.iium.edu.my; maleque@iium.edu.my

Keywords: Piston alloy, Wear, Microstructure, Profilometry, Surface analysis.

Abstract: Low expansion, low density and high resistance to corrosion at ambient temperature make the aluminum-silicon alloys very suitable for wear resistant components in the automotive industry. Therefore, the main aim of this research is to conduct the wear test of the Al-Si piston alloy with the increasing sliding distance. The cylindrical shaped wear testing specimens were prepared from the piston material. Wear experiments for both lubricant and without lubricant conditions were conducted with a pin-on-disk type wear testing machine. The extent of wear rate was investigated by means of weight loss. Wear rate increased with the increase of sliding distance for both conditions. The effect of the wear on the surface profile was also investigated and it was clearly observed that before wear test the arithmetical average roughness, R_a and root mean roughness, R_q were 653 nm and 947 nm respectively and after wear test R_a and R_q were found without lubricant condition 638 nm and 898 nm and in the lubricant condition the values of R_a and R_q were observed to be 795 nm and 973 nm respectively. The wear rate was increased with the increasing sliding distance for the aluminum-silicon automotive piston alloy for both conditions.

Introduction

The dentition of tribology is the science and technology of interacting surfaces in relative motion and the word 'Tribology' comes from the Greek word 'Tribos', which means rubbing or attrition. It is the study of friction, wear and lubrication, which involve the movement of one solid surface over another solid surface [1]. In the industrial sector the tribological research is very important for the purpose of economical development, it can be effect directly on the cost of 1 to 4% of the gross national product (GDP), and so it is still a major problem for the whole economy [2]. In the automotive industry- wear, fatigue and premature failures are created the severe troubles which can be greatly affected on the economy of the whole automotive industry. Therefore, many attempts have been taken to produce more durable materials and techniques to reduce wear of automotive tools and components. Moreover, still it is eagerly needs to be conducted more extensive investigations in spite of many research has been carried out on the automotive piston materials. Aluminum–silicon eutectic or near eutectic alloys are cast to produce majority of pistons and are known as 'piston alloy', which provides a good overall balance of properties [3]. In modern time automotive piston material needs to be very light weight, good strength-to-weight ratio, ease